# VikingLink V nationalgrid

### **UK Onshore Scheme**

### Proposed Converter Station Outline Drainage Strategy

VKL-08-39-G500-015 August 2017

# national**grid**

### Contents

| 1   | INTRODUCTION                                | . 1 |
|-----|---------------------------------------------|-----|
| 1.1 | Introduction                                | 1   |
| 1.2 | Scope of this Report                        | 1   |
| 2   | SOURCES OF INFORMATION                      | . 1 |
| 2.1 | Introduction                                | 1   |
| 3   | PLANNING POLICY, LEGISLATION AND GUIDANCE   | . 3 |
| 3.1 | Key National Planning Policy                | 3   |
| 3.2 | Key Local Planning Policy                   | 3   |
| 3.3 | Key Legislation                             | 5   |
| 3.4 | Key Guidance                                | 6   |
| 4   | SITE SETTING & EXISTING DEVELOPMENT         | . 9 |
| 4.1 | Site Location                               | 9   |
| 4.2 | Hydrological Catchment                      | 9   |
| 4.3 | Existing Development                        | 9   |
| 5   | PROPOSED DEVELOPMENT                        | 10  |
| 5.1 | Overview                                    | 10  |
| 6   | BASELINE CONDITIONS                         | 12  |
| 6.1 | Hydrological Overview                       | 12  |
| 6.2 | Flood Risk                                  | 12  |
| 6.3 | Geology                                     | 12  |
| 6.4 | Hydrogeology                                | 13  |
| 6.5 | Existing Drainage Infrastructure            | 13  |
| 7   | SURFACE WATER DRAINAGE STRATEGY             | 14  |
| 7.1 | Introduction                                | 14  |
| 7.2 | Surface Water Runoff Hydraulic Calculations | 14  |
| 7.3 | Preliminary Surface Water Drainage Strategy | 14  |
| 8   | SUMMARY AND CONCLUSION                      | 17  |
| 8.1 | Summary                                     | 17  |
| 8.2 | Surface Water Drainage Strategy Summary     | 17  |
| 8.3 | Conclusion                                  | 17  |
| 9   | REFERENCES                                  | 18  |

# nationalgrid

### **List of Tables**

| Table 1 Information sources consulted during preparation of the report.                             | . 1 |
|-----------------------------------------------------------------------------------------------------|-----|
| Table 2 Peak rainfall intensity allowance in small and urban catchments (use 1961 to 1990 baseline) | . 8 |
| Table 3 Proposed Converter Station engineering design assumptions                                   | 11  |
| Table 4 Runoff Characteristics                                                                      | 14  |
| Table 5 Typical Maintenance Schedule for Ponds                                                      | 16  |

### **Appendices**

Appendix A Site Location Plan Appendix B Hydraulic Calculations

### **Glossary & Abbreviations**

| Glossary of Terms                  |                                                                                                                                                     |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                               | Meaning                                                                                                                                             |
| Viking Link                        | Also referred to as the Project (from Revsing to Bicker Fen)                                                                                        |
| UK Onshore Scheme                  | Also referred to as the Scheme (from MLWS to Connection Point)                                                                                      |
| Bicker Fen Substation              | Also referred to as the connection point                                                                                                            |
| Temporary construction area        | Working area (AC and DC cable) in addition to working width                                                                                         |
| Temporary construction compound    | Compound for site offices, storage, welfare facilities etc.                                                                                         |
| Converter station                  | Specialist facility to convert electricity AC to DC or vice versa                                                                                   |
| Proposed converter station site    | The complete site including temporary working areas. (approx. 28 ha)                                                                                |
| Proposed converter station zone    | The proposed zone containing the converter station, buildings and outdoor electrical equipment and associated hardstandings within a security fence |
| Proposed permanent access road     | The permanent access to the converter station from the A52                                                                                          |
| Proposed AC cable route            | Also referred to as the AC route (from converter station to Bicker Fen)                                                                             |
| Proposed AC cable<br>working width | Typical 60m wide works corridor in which AC cable installation will occur                                                                           |
| Junction box                       | Kiosk-like infrastructure marking joint between adjacent AC cable sections                                                                          |
| Rochdale Envelope                  | The maximum parameters in which the converter station will be designed.                                                                             |
| Limits of Deviation                | The maximum corridor in which DC and AC cables will be installed                                                                                    |
| Base Scheme design                 | The base design of the UK Onshore Scheme (combines the RE and LoD)                                                                                  |
| The Contractor                     | Party or parties responsible for the detailed design and construction                                                                               |

| List of Abbreviation |                                                            |  |  |  |
|----------------------|------------------------------------------------------------|--|--|--|
| Abbreviation         | Meaning                                                    |  |  |  |
| AC                   | Alternating Current                                        |  |  |  |
| BGS                  | British Geological Survey                                  |  |  |  |
| CFMP                 | Catchment Flood Management Plan                            |  |  |  |
| CIRIA                | Construction Industry Research and Information Association |  |  |  |
| DC                   | Direct Current                                             |  |  |  |

# national**grid**

| List of Abbreviation |                                                            |  |  |
|----------------------|------------------------------------------------------------|--|--|
| Abbreviation         | Meaning                                                    |  |  |
| DK                   | Danish Onshore Scheme                                      |  |  |
| DTM                  | Digital Terrain Model                                      |  |  |
| EA                   | Environment Agency                                         |  |  |
| FRA                  | Flood Risk Assessment                                      |  |  |
| HA (ha)              | Hectare                                                    |  |  |
| HVAC                 | High Voltage Alternating Current                           |  |  |
| HVDC                 | High Voltage Direct Current                                |  |  |
| IDB                  | Internal Drainage Board                                    |  |  |
| LA                   | Local Authority                                            |  |  |
| LLFA                 | Lead Local Flood Authority                                 |  |  |
| LPA                  | Local Planning Authority                                   |  |  |
| l.s-1                | Litres per Second (unit volume over time)                  |  |  |
| I.s-1.ha-1           | Litres per Second per Hectare (unit volume, time and area) |  |  |
| m AOD                | Metres Above Ordnance Datum (unit height)                  |  |  |
| mg.l-1               | Milligrams per Litre (unit concentration)                  |  |  |
| MLWS                 | Mean Low Water Springs                                     |  |  |
| MW                   | Megawatt                                                   |  |  |
| NGVL                 | National Grid Viking Link                                  |  |  |
| NPPF                 | National Planning Policy Framework                         |  |  |
| PPG                  | Planning Practice Guidance                                 |  |  |
| SAAR                 | Standard Average Annual Rainfall                           |  |  |
| SFRA                 | Strategic Flood Risk Assessment                            |  |  |
| SHDC                 | South Holland District Council                             |  |  |
| SPZ                  | Source Protection Zone                                     |  |  |
| SuDS                 | Sustainable Drainage Systems                               |  |  |
| WFD                  | Water Framework Directive                                  |  |  |
| Zol                  | Zone of Influence                                          |  |  |

### 1 Introduction

### 1.1 Introduction

1.1.1 This Surface Water Drainage Strategy has been prepared by RPS on behalf of National Grid as part of the planning application for the UK Onshore Scheme. The Drainage Strategy is focused on the proposed converter station which is to be located on agricultural land located off North Ing Drove, South Holland. The location and extent of the proposed development boundary is illustrated in Appendix A.

### **1.2** Scope of this Report

- 1.2.1 In terms of scope, the focus of this report is to outline a strategy for the disposal of surface water from the site once developed for its intended purposes.
- 1.2.2 Existing baseline conditions, including the existing drainage arrangements and ground conditions are reviewed along with national and local drainage policies and guidance. This report is not intended to provide a formal surface water drainage detailed design, but to provide information to demonstrate that the proposals can be provided with an acceptable means of surface water disposal.
- 1.2.3 The level and type of flood risk within the site has been examined within a site-specific Flood Risk Assessment (FRA) undertaken by RPS (Ref VKL-08-39-G500-010). The FRA is also to be included within the pre-application submission documents.

### 2 Sources of Information

### 2.1 Introduction

2.1.1 Table 1 below lists the information sources consulted during preparation of this report. The assessment has been undertaken in accordance to the guidance detailed within the National Planning Policy Framework (NPPF) and the accompanying Planning Practice Guidance (PPG). This Drainage Strategy has been prepared with reference to documents and information sources provided and / or published by the following bodies:

| Table 1 Information sources consulted during preparation of the report.                                                           |                                                                                                                                                              |                                                                                                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Data                                                                                                                              | Source                                                                                                                                                       | Notes                                                                                                                    |  |  |
| Site setting and hydrology.                                                                                                       | OS Mapping 1: 50 000 Sheet 130: Grantham. (Ref: 21.1).                                                                                                       | Area information, rivers<br>and other watercourses,<br>general environs, built<br>environment, catchment<br>information. |  |  |
| Geology.                                                                                                                          | British Geological Society (BGS) (online) Geology of<br>Britain Viewer. (Ref: 21.2)<br>Available at:<br>http://mapapps.bgs.ac.uk/geologyofbritain/home.html. | Area geology.                                                                                                            |  |  |
| Hydrological setting.                                                                                                             | Environment Agency (EA) data holdings, customer service, engagement team and online mapping. (Ref: 21.3).                                                    | Current flood risk, local<br>flood defences, flood<br>levels, supplementary<br>geology and groundwater<br>information.   |  |  |
|                                                                                                                                   | Local Planning Authority (LPA) - South Holland<br>District Council (SHDC).                                                                                   | Flood Zoning<br>Local development<br>framework.                                                                          |  |  |
| Water Utility<br>Assets. Anglian Water.                                                                                           |                                                                                                                                                              | Water and sewerage<br>assets in the vicinity of the<br>proposed converter<br>station site.                               |  |  |
| NPPF (Ref: 21.4).Planning<br>documentation.PPG (Ref: 21.5).Construction Industry Research and Information<br>Association (CIRIA). |                                                                                                                                                              | Flood zoning for the proposed converter station site.                                                                    |  |  |

| Table 1 Information sources consulted during preparation of the report. |                                     |                                                                        |  |  |
|-------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------|--|--|
| Data Source                                                             |                                     | Notes                                                                  |  |  |
|                                                                         | SHDC Local Plan, 2006. (Ref: 21.6). | Planning polices relevant<br>to hydrology, flood risk<br>and drainage. |  |  |

# 3 Planning Policy, Legislation and Guidance

### 3.1 Key National Planning Policy

### National Planning Policy Framework, March 2012

- 3.1.1 The NPPF sets out Government planning policies for England and how these are expected to be applied. The framework acts as guidance for local planning authorities and decision-takers, both in drawing up plans and making decisions about planning applications.
- 3.1.2 Paragraphs 99-104 set out the need for an appropriate assessment of flood risk. Guidance on the minimum requirements for such as assessment is contained in PPG ID7.

### 3.2 Key Local Planning Policy

### South Holland Local Plan 2006

- 3.2.1 The SHDC Local Plan sets out the planning policies which will guide and control new development in the District until 2021.
- 3.2.2 Following the direction by the Secretary of State, as of 18th July 2009, the policy regarding Development and Flood Risk is no longer valid.
- 3.2.3 The policies relevant to Sustainable Urban Drainage Systems (SuDS) and pollution and contamination have been outlined below.

#### Policy SG11: Sustainable Urban Drainage System

- 3.2.4 Development generating surface water run-off, likely to result in increased flood risk, will be permitted provided that:
  - The development's surface water management system accords with sustainable development principles and has been designed as part of the development layout; and
  - The system will effectively control and adequately mitigate or attenuate any adverse effects from surface water run-off on people, habitats of acknowledged importance and property; and
  - Developers can ensure long term maintenance of the drainage systems, where necessary through planning obligations.
- 3.2.5 Where this is not possible the developer will be required to implement an alternative method of surface water disposal that is to the Council's satisfaction.

#### Policy SG13: Pollution and Contamination

3.2.6 Planning permission will only be permitted for development proposals which:

- do not cause unacceptable levels of pollution of the surrounding area by noise, light, toxic or offensive odour, airborne pollutants or by the release of waste products;
- provide, as necessary, appropriate treatment of land to clean up pollution and contamination.

#### South East Lincolnshire Local Plan 2006

- 3.2.7 A new local plan is currently being produced jointly between SHDC, Boston Borough Council and Lincolnshire Country Council. The Draft Plan sets out the vision, strategic priorities and policies for the future development of South East Lincolnshire. It also identifies site options for housing and employment to deliver the growth planned for the Plan Area to 2036.
- 3.2.8 The plan is currently in the publication (Pre-Submission) Consultation phase of development, seeking the views of local residents, key stakeholders and other interested parties as to whether they consider the Plan meets all obligations.

### Black Sluice IDB Land Drainage Byelaws and Developer Guidance (Ref: 21.7)

- 3.2.9 The BSIDB powers and authority outlined by section 34 of the Land Drainage Act 1976 proposed a number of Byelaws for securing the efficient working of drainage systems in their district. As of the 6<sup>th</sup> April 2015, the Board acts as a sub-consultee to the Lead Local Flood Authority (Lincolnshire County Council) for all matters regarding flood risk and surface water discharge. An outline of the Byelaws relevant to the proposed converter station and permanent access road in relation to water resources and hydrology are as follows:
  - Byelaw 3: Control of Introduction of Water and Increase in Flow or Volume of Water
  - · Byelaw 6: Diversion or Stopping Up of Watercourses
  - · Byelaw 7: Detrimental Substances Not to be put into Watercourses
  - Byelaw 10: No Obstructions within 9 Metres of the Edge of the Watercourse

#### Guidance for Property Owners & Developers

3.2.10 The BSIDB considers a number of factors when appraising proposed properties or developments. The factors relevant to flood risk and hydrology on the proposed converter station site are presented below:

#### Section 1: Rainfall Run-off and Development Contributions

3.2.11 The Board's consent is required to increase the rate of rainfall run-off from a property or development. Where possible, sustainable methods of disposal (SuDS) should be used which do not adversely affect existing surface water management, nor adversely expose people or property to an increased risk of flooding.

- 3.2.12 A development contribution shall be payable to the Board for any discharge from the site above the Greenfield rate. For regulated or attenuated flow, BSIDB present the Green field rate as follows:
  - · Green field rate: 1.4 litres per second per Hectare.

#### Section 3: Discharge Outfalls

3.2.13 The Board's consent is required before any structure is placed in a Board watercourse. All outfalls shall have a suitable headwall to protect the banks from erosion. No part of the headwall unit shall protrude beyond the profile of the bank in order that flails and weed cutting machinery is not obstructed. Suitable scour protection shall be placed below and/or in front of the headwall if necessary.

#### Section 4 - Access to Watercourses and Byelaws

- 3.2.14 No obstructions shall be placed within 9m of the edge of a Board watercourse. Access to and maintenance of all other watercourses or piped systems (not vested with any authority) is the responsibility of the riparian owners (i.e. the land or property owners on either bank).
- 3.2.15 Developers should take into account the future maintenance of riparian or private watercourses and piped systems when designing the site layout; access may be required for weed cutting excavators or for jetting equipment for piped systems.
- 3.2.16 Developers shall inform purchasers of the presence of a Board Watercourse and/or their responsibilities relating to a riparian watercourse.

#### Section 7 – Site Ground Levels

- 3.2.17 The Board recommends that the ground level of the site should not be raised above the level of neighbouring land unless it can be shown that it will not:
  - · Obstruct overland surface water flow from neighbouring land;
  - · Cause surface water to flow overland off the site onto neighbouring land; and
  - Raise the sub-surface water table causing water logging of neighbouring land.
- 3.2.18 In general if ground levels are raised above surrounding land then interceptor infiltration drains (French Drains) will need to be installed around the site boundary.

### 3.3 Key Legislation

#### Flood and Water Management Act

3.3.1 The Flood and Water Management Act 2010 (Ref: 21.8) placed new duties on upper tier Councils, by designating them as Lead Local Flood Authorities (LLFAs) for the coordination of local flood risk management in their respective administrative areas.

- 3.3.2 From April 6 2015, the responsibility for drainage and surface water management design approval resides with the local planning authority and the design of the drainage and surface water management should be submitted as part of the planning process.
- 3.3.3 Local planning authorities have responsibility for the approval of proposed drainage systems in new developments and redevelopments. Approval must be given before any developer can commence construction. In order to be approved, the proposed drainage system has to meet national standards for sustainable drainage.
- 3.3.4 The national standards set out the criteria by which the form of drainage appropriate to any particular site or development can be determined, as well as requirements for the design, construction, operation and maintenance of SuDS.
- 3.3.5 Additional guidance for the use of SuDS is provided via CIRIA and BRE in the following:
  - · C753 The SuDS Manual, 2015 (Ref: 21.9);
  - · C522 Sustainable Drainage Systems- Design Manual for England and Wales (Ref: 21.10);
  - · C523 Sustainable Drainage Systems- Best practice (Ref: 21.11);
  - · C156 Infiltration Drainage Manual of Good practice (Ref: 21.12); and
  - · BRE365 Soakaway design (Ref: 21.13).

### 3.4 Key Guidance

#### Planning Practice Guidance, online

- 3.4.1 PPG ID7 Flood Risk and Coastal Change provides guidance to ensure the effective implementation of the NPPF planning policy for development in areas at risk of flooding.
- 3.4.2 PPG ID7 states that for major developments, as defined in the Town and Country Planning (Development Management Procedure, England) Order 2015 (updated April 2015), SuDS should be provided unless demonstrated to be inappropriate.
- 3.4.3 The PPG (paragraph 51) recommends that priority should be given to the use of sustainable drainage systems as they are designed to control surface water runoff where it falls and to mimic natural drainage as closely as possible. SuDS also provide opportunities for the following:
  - · Reduce the causes and impacts of flooding;
  - · Remove pollutants from urban runoff at source; and
  - · Combine water management with green space with benefits for amenity, recreation and wildlife.
- 3.4.4 Approved Document H of the Building Regulations and the PPG (paragraph 80) agree on the hierarchy of surface water drainage disposal and is set out as below:
  - 1 Into the ground (infiltration);
  - 2 To surface water body;
  - 3 To a surface water sewer, highway drain or another drainage system; and
  - 4 To a combined sewer.

- 3.4.5 SuDS can be incorporated into any development, but the choice of system used is dependent upon ground conditions and on the availability of suitable areas within a development layout.
- 3.4.6 Infiltration based techniques are high up in the hierarchy of techniques available due to the ability for close to source dispersion of surface water. This technique is considered the closest solution to mimic the natural drainage of undeveloped sites.
- 3.4.7 SuDS encompass a wide range of drainage techniques intended to minimise the rate of discharge, volume and environmental impact of runoff and include:
  - · Permeable pavements;
  - · Swales and basins;
  - · Green roofs and rainwater reuse;
  - · Infiltration trenches and filter drains; and
  - · Ponds and wetlands.
- 3.4.8 Sustainable infiltration techniques include the use of permeable paving, gravel filled trench soakaways, concrete ring soakaways, infiltration trenches, infiltration blankets and swales. When used across a site these techniques control the rate of discharge, attenuate flow, provide storage and recharge groundwater. Storage capacity within infiltration and attenuation schemes can be increased with the use of cellular storage crates.
- 3.4.9 As well as allowing infiltration and attenuation, permeable paving also degrades pollutants such as hydrocarbons, which thereby improves the quality of surface water to ground.

#### Sustainable Drainage Systems Non-Technical Standard for SuDS (March 2015), DEFRA

3.4.10 The sustainable Drainage Systems Non-Technical Standard for SuDS (Ref: 21.14) document sets out non-statutory technical standards for SuDS and should be used in conjunction with the NPPF and PPG. The standards state the following with regards to peak flow and volume control for greenfield sites:

"S2: For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event; and

S4: Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event."

#### **Climate Change**

3.4.11 The NPPF and supporting PPG ID7 requires applicant to demonstrate how surface water run-off will be managed now and over the development's lifetime, taking climate change into account.

3.4.12 In February 2016, the EA updated advice on climate change allowances (Ref: 21.15/21.16) to support the NPPF. New guidance requires that surface water run-off assessments take due consideration of both the central and upper end allowances climate change allowances for peak rainfall intensity (Table 2) to understand the potential range of impacts.

| Table 2 Peak rainfall intensity allowance in small and urban catchments (use 1961 to 1990 baseline) |                                                              |                                                           |                                                        |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--|--|
| Applies across<br>all of England                                                                    | Total potential<br>change<br>anticipated for<br>2010 to 2039 | Total potential change<br>anticipated for 2040 to<br>2059 | Total potential change<br>anticipated for 2060 to 2115 |  |  |
| Upper End                                                                                           | 10%                                                          | 20%                                                       | 40%                                                    |  |  |
| Central                                                                                             | 5%                                                           | 10%                                                       | 20%                                                    |  |  |

### 4 Site Setting & Existing Development

### 4.1 Site Location

4.1.1 The proposed converter station site comprises an irregular shaped parcel of agricultural land situated between North Ing Drove road and Middle Fen Drove road, centred on NG 518705, 337377, c.2 km west of Northorpe Village centre, Lincolnshire. The site location plan is included in Appendix A for reference.

### 4.2 Hydrological Catchment

- 4.2.1 The proposed converter station site is situated within the South Holland District which covers approximately 750 km<sup>2</sup>, encapsulating the South Forty Foot Drain which is fed by a complex network of ordinary watercourses, drainage ditches and channels.
- 4.2.2 The area surrounding the proposed converter station is rural where much of the land is drained for agriculture. The South Forty Foot Drain flows in a general northerly direction towards Boston and discharges into the Haven via London Road pumping station.

### 4.3 Existing Development

4.3.1 The proposed converter station site covers 30.00 hectares (ha) and is currently used for agricultural purposes with enclosed fields separated by hedging. The proposed converter station site is defined by North Ing Drive road to the south, Middle Fen Drove road to the north and field drainage to the east and west. The proposed converter station site is open with a gentle slope from north to south, with a number of agricultural buildings located on the southern boundary.

### 5 Proposed Development

### 5.1 Overview

- 5.1.1 The surface water drainage assessment presents drainage arrangements for the proposed converter station in order to reduce any potential impact of the base scheme design on the surrounding receptors. For the purposes of the application for planning permission a base scheme has been established with which the Contractor's detailed design will comply. The base design establishes parameters including details of the maximum size and layout and appearance of the proposed converter station. This approach strikes a balance, ensuring sufficient information to inform the drainage strategy based on a realistic worst case whilst also providing some flexibility to the Contractor in finalising the detailed design of the proposed converter station.
- 5.1.2 A detailed description of the proposed converter station is contained in chapter 17 of the ES. The proposed converter station zone layout plan can be found in Drawing 4. It is located within a 30 ha site and comprises a number of distinct zones based on design parameters. The zones include:
  - Building and outdoor electrical equipment zone: This comprises two areas which have been defined based on the maximum heights of the building(s) and/or outdoor electrical equipment which could be constructed within them.
    - Sub-zone A to the north of the converter station zone containing buildings up to 16 m tall and/or outdoor electrical equipment up to 24m tall. This would include components such as the transformers and AC switchyard.
    - Sub-zone B to the south of the converter station zone containing buildings and/or outdoor electrical equipment up to 24 m tall. This would include components such as the DC switch hall, valve halls and AC reactor.
  - Perimeter road zone: This comprises a permanent perimeter road which would form a continuous circuit around the converter station to facilitate access. It has been defined taking into account the largest vehicles which will require access to the site as well as appropriate clearances.
  - Security zone: This comprises an 8 m wide 'buffer' zone within which security fencing would be erected. This provides clearance between the perimeter road and landscape zones. It would include security fencing up to 3.5 m tall and incorporate security gates for pedestrian and vehicle access/egress to/from the site. CCTV cameras will also be installed at regular intervals.
  - Additional hardstanding zone: This comprises an area for permanent car parking for up to twenty vehicles as well as an area of hardstanding to provide a permanent laydown area for the storage of equipment and plant as well as providing an area to be used for siting of temporary offices and welfare facilities in the event of future maintenance activities. Part of the hardstanding will be within the security zone and the remainder will be situated outside of the security fence.

- Reinstated zone: This comprises all areas within the site which are not required for permanent development. The reinstated zone lies to the east of the converter station and could potentially be returned to agricultural use. The reinstated areas to the north and south of the converter station would be seeded but would not be returned to agricultural use.
- Attenuation zone: This comprises an area of the site which would be used to establish an attenuation pond as part of the permanent drainage scheme. The pond(s) have been sized based on estimated runoff rates from the developed areas to establish the maximum area required.
- Landscape planting zone: This comprises a variable 30-40 m wide 'buffer' zone which follows the perimeter of the converter station site. Within this zone a combination of earthworks and landscape planting will provide permanent landscape screening.
- 5.1.3 The base scheme design for the proposed converter station zone has been developed in order to provide sufficient information upon which a realistic worst case scenario can be assessed. Table 3 sets out the engineering assumptions which have informed the strategy.

| Table 3 Proposed Converter Station engineering design assumptions  |                                                                                                                                                                                      |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Flood Zone                                                         | Flood Zone Definition                                                                                                                                                                |  |  |  |
| Proposed converter station footprint.                              | Approximately 4.8 ha.                                                                                                                                                                |  |  |  |
| Additional Hardstanding.                                           | Approximately 1.4 ha.                                                                                                                                                                |  |  |  |
| 2 Poles each including 3 transformers (plus one spare transformer) | 15 m x 15m.<br>Total area 1,575 m <sup>2</sup> .                                                                                                                                     |  |  |  |
| Routine maintenance of the proposed converter station.             | May involve the use of oils, greases<br>and other substances with associated<br>potential for accidental spillages.<br>Oils / chemical spills to ground are<br>worst case condition. |  |  |  |
| Construction.                                                      | Undertaken over a 2-3 year<br>programme steered to observe<br>seasonal restrictions where<br>practicable and avoid soil handling<br>activities in winter months.                     |  |  |  |
| Ground Profiling.                                                  | Establish 2.90 m AOD converter station zone platform level.                                                                                                                          |  |  |  |
| Operation.                                                         | Potential risk of oil spillage.                                                                                                                                                      |  |  |  |
| Decommissioning (Proposed converter station).                      | May include the dismantling and removal of all components for recycling or disposal.                                                                                                 |  |  |  |

### 6 Baseline Conditions

### 6.1 Hydrological Overview

- 6.1.1 The closest watercourses to the proposed converter station are the Mill Drain located along the northern boundary of the site and North Ing Drive Drain, which originates along the northern boundary then arcs along the western boundary connecting with Mill Drain in the northwest corner of the proposed site. These drains are managed by the Black Sluice Internal Drainage Board (IDB).
- 6.1.2 The closest EA designated Main River to the proposed converter station is the South Forty Foot Drain which flows northwards in an open embanked channel approximately 820 m to the west of the proposed converter station.

### 6.2 Flood Risk

- 6.2.1 The EA undefended flood mapping for Planners (Figure 1) indicates that the central and southern areas of the proposed converter station are situated within undefended Flood Zone 2 and 3, defined as at medium to high risk of fluvial/tidal flooding. The north, east and western extents are shown to be located in Flood Zone 1 indicative of a low risk of tidal/fluvial flooding.
- 6.2.2 The FRA (Ref VKL-08-39-G500-010) confirms the proposed converter station site is at low risk of flooding from all sources.

### 6.3 Geology

- 6.3.1 Geological maps published by the British Geological Survey (BGS 1:50,000) indicate the proposed converter station is underlain by superficial Barrow Drove Beds (Soft to firm, dark brown or orange-brown, mottled grey, sandy clay with loose and very loose orange-brown, medium sand) and Till (Boulder Clay). The bedrock underlying the superficial deposits is composed of the Oxford Clay Formation which comprises silicate-mudstone, grey, generally smooth to slightly silty, with sporadic beds of argillaceous limestone nodules.
- 6.3.2 Groundwater monitoring undertaken by AECOM (October 2016) during the preliminary ground investigation on the proposed converter station site within the three boreholes (BH 01, BH02, BH03) indicates that the depth to groundwater ranged between 0.58 metres below ground level (m bgl) and 2.53 mbgl within the Barroway Drove Beds.
- 6.3.3 The investigations observed no evidence of contamination within the subsoils, nor significant contamination levels within the groundwater beneath the proposed converter station site.
- 6.3.4 No infiltration / soakaway testing was undertaken as part of the investigations. Table 25.1 of the SuDS manual, CIRIA (C753) shows that soils consisting of mudstone, clay and silt are a poor infiltration media with a typical infiltration coefficient of 1.0 x 10-8 m/s. The minimum infiltration rate

value deemed acceptable within the manual is 1.0 x 10-6 m/s. It is reasonable to consider that the sub soils across the site will have limited infiltration potential.

### 6.4 Hydrogeology

6.4.1 The EA provides publically available mapping which indicates the groundwater vulnerability of geological deposits of England. The available mapping shows the site is not located within a groundwater vulnerability or source protection zone.

### 6.5 Existing Drainage Infrastructure

6.5.1 The site is agricultural, undeveloped land, it is therefore considered unlikely that there will be any formal sewer drainage systems present in the vicinity of the site.

### 7 Surface Water Drainage Strategy

### 7.1 Introduction

7.1.1 This section of the report sets out the hydraulic calculations pre and post development and proposes a viable preliminary surface water strategy for the site.

### 7.2 Surface Water Runoff Hydraulic Calculations

7.2.1 The FRA (Ref VKL-08-39-G500-010) presents current and proposed run off rates for the site for the following return periods: 1 in 1 year, 1 in 30 year and 1 in 100 year. The calculations were undertaken in MicroDrainage. An extract of the results are included within Table 4 below.

| Table 4 Runoff Characteristics   |                                |          |                                           |          |                             |          |
|----------------------------------|--------------------------------|----------|-------------------------------------------|----------|-----------------------------|----------|
| Annual<br>Probability<br>(Return | Current (Greenfield)<br>Runoff |          | Proposed<br>(Unmitigated)<br>Runoff (I/s) |          | Increase in Runoff<br>(I\s) |          |
| Period, years)                   | (I/s)                          | (I/s/ha) | (I/s)                                     | (I/s/ha) | (I/s)                       | (I/s/ha) |
| 100% (1)                         | 9.70                           | 1.22     | 39.00                                     | 4.91     | 29.30                       | 3.69     |
| QBAR urban                       | 11.10                          | 1.40     | 44.90                                     | 5.65     | 33.80                       | 4.25     |
| 3.33% (30)                       | 26.70                          | 3.36     | 80.20                                     | 10.09    | 53.50                       | 6.73     |
| 1% (100)                         | 39.60                          | 4.98     | 94.50                                     | 11.89    | 54.90                       | 6.91     |
| 1% + 20%<br>climate change       | 47.52                          | 5.98     | 113.40                                    | 14.26    | 65.88                       | 8.28     |
| 1% + 40%<br>climate change       | 55.44                          | 6.97     | 132.30                                    | 16.64    | 76.86                       | 9.67     |

### 7.3 Preliminary Surface Water Drainage Strategy

7.3.1 Using the initial onsite attenuation storage calculations and design assumptions within the FRA (Ref VKL-08-39-G500-010), it is proposed to convey and attenuated the converter station's surface water runoff to an onsite attenuation pond. It is proposed, subject to site levels and IDB

approval, for the attenuation to discharge as close as feasible to the BSIDB green field rate of 1.4 litres per second per Hectare (11.10 l/s) to either the adjacent Mill Drain or the North Ing Drive Drain.

- 7.3.2 Alternatively, if required, the attenuation pond could discharge directly to the ground, and disperse discharge by means of a perforated pipe.
- 7.3.3 Given the variable levels of the groundwater table, it is anticipated that the attenuation pond would require an impermeable geotextile membrane. However, this will be subject to further intrusive testing and detailed design.
- 7.3.4 Flow restriction will most likely be achieved by installing a control chamber manhole (hydrobrake or similar) or orifice plate upstream of the outfall to ensure the attenuation supplied is utilised and maximised.
- 7.3.5 Preliminary calculations for the ponds required attenuation storage was undertaken utilising a hydrobrake to provide the flow restriction. The pond structure was modelled assuming a 1/3 slope and a base storage area of 5,810 m<sup>2</sup>.
- 7.3.6 A storage depth of 1.25 m, and a resultant top storage area of 7,009 m<sup>2</sup> is required for the 100 year return period plus 20% climate change. A storage depth of 1.5 m, and a resultant top storage area of 7,262 m<sup>2</sup> is required for the 100 year return period plus 40% climate change.
- 7.3.7 The preliminary calculations undertaken indicate there is sufficient space for an attenuation pond within the area designated for attenuation within the proposed converter station site.
- 7.3.8 It is important to note that the calculations undertaken only consider the storage area required and not the 'wet' pond area / depth or freeboard area / depth. It would be recommended that attenuation pond is a wet pond, rather than a dry basin to provide ecological benefits to the proposed converter station site and to improve water quality by planting. A minimum freeboard of 0.3 m from the maximum water level to the stations finished flood level is recommende.
- 7.3.9 All MicroDrainage storage calculations relating to the preliminary pond design are included within Appendix B for reference.

### Adoption and Maintenance

7.3.10 All new surface water infrastructure constructed to serve the site will be designed in accordance with Building Regulations Part H, current best practice and manufacturers' guidance where appropriate. It is anticipated that all infrastructure proposed will remain private.

### Future Maintenance of Proposed SuDS Assets

7.3.11 Maintenance and management of SuDS features is now regarded as an important element of design to be considered from planning. It is anticipated that the SuDS assets proposed within the strategy are likely to remain private and be maintained by a management company set up by the developer or private owners, as appropriate.

7.3.12 Typical ongoing maintenance activities for attenuation ponds are tabulated in Table 5 below. All maintenance operations should be undertaken in accordance with manufacturer's guidance and current best practice as appropriate.

| Table 5 Typical Maintenance Schedule for Ponds     |                                                                                              |                            |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|--|--|
| Maintenance Activity                               | Remedial Action                                                                              | Inspection<br>Frequency    |  |  |
| Litter removal from swales and ponds               | Remove all litter. Quantity to vary depending                                                | 1 per month or as required |  |  |
| Inspect control structures to and from swale/ponds | Surface control structure can be slot weirs, gabion baskets. Visual inspection required only | 1 per month                |  |  |
| Landscape maintenance                              | Grass cutting on slopes and around point and vegetation removal as required                  | As required                |  |  |
| Pond maintenance                                   | Remove planting and silt from the base of the pond                                           | 1 per 5 years              |  |  |
| Water condition                                    | Inspection for excessive algae blooms in water                                               | As required                |  |  |

### 8 Summary and Conclusion

### 8.1 Summary

8.1.1 A surface water drainage strategy in accordance with the NPPF and Planning Practice Guidance has been produced for the proposed converter station zone on land off North Ing Drove, Northorpe, South Holland.

### 8.2 Surface Water Drainage Strategy Summary

- 8.2.1 The purpose of this report is to outline surface water drainage strategy to demonstrate that an acceptable means of surface water disposal can be provided to facilitate the proposals.
- 8.2.2 Opportunities to utilised infiltration SuDS techniques are likely to be limited due to the likely low infiltration potential of the sites sub soils.
- 8.2.3 It is proposed to convey and attenuated the converter station's surface water runoff to an onsite attenuation pond, and discharge to either the Mill Drain or the North Ing Drive Drain, located adjacent to the site northern boundary. This is subject to site levels and IDB approval. Alternatively, the attenuation would discharge directly to ground.
- 8.2.4 Preliminary calculations undertaken indicate there is sufficient space for an attenuation pond within the area designated for attenuation within the site proposals provided.
- 8.2.5 Calculations have included for a restricted outfall of the site to the BSID green field green field rate of 1.4 litres per second per Hectare.
- 8.2.6 Preliminary calculations undertaken have demonstrated that acceptable attenuation storage can be provided onsite for the 1 in 100 plus 20% and 40% climate change return period. The depth, and storage base and top areas have been calculated and provided for each climate change event.

### 8.3 Conclusion

8.3.1 This Surface Water Drainage Strategy and supporting documentation illustrates that the proposed development is at risk of flooding. However, following the incorporation of appropriate drainage and attenuation measures, there are no overriding or sustainable reasons why the development proposals should not be approved.

### 9 References

Ref: 21.1 Ordnance Survey Explorer (2012) 1:50,000 Map 130: Grantham/ Ordnance Survey 1:10,000 Scale Electronic Data Mapping for assessment area;

Ref: 21.2 BGS (Online), Geology of Britain Viewer. Available at:

http://mapapps.bgs.ac.uk/geologyofbritain/home;

Ref: 21.3 Environment Agency Website (www.environment-agency.gov.uk) [Accessed September 2015, November 2015, January 2016, February 2016 and March 2016];

Ref: 21.4 Communities and Local Government, March 2012. National Planning Policy Framework;

Ref: 21.5 Planning Practice Guidance (<u>http://planningguidance.communities.gov.uk/</u>) [Accessed September 2015, November 2015, January 2016, February 2016, March 2016, May 2016, July 2016 and September 2016];

Ref: 21.6 South Holland District Council (2006). South Holland District Council Local Plan.

Ref: 21.7 Black Sluice IDB Website (http://www.blacksluiceidb.gov.uk/) [Accessed July 2017].

Ref: 21.8 Flood and Water Management Act 2010. (c.29). London: The Stationery Office.

Ref: 21.9 CIRIA Report C753 (2015). The SuDS manual;

Ref: 21.10 CIRIA Report C522 (2000). Sustainable Drainage Systems- Design Manual for England and Wales

Ref: 21.11 CIRIA Report C523 (2001). Sustainable Drainage Systems- Best practice

Ref: 21.12 CIRIA Report (1996). C156 Infiltration Drainage - Manual of Good practice

Ref:.21.13 BRE Digest 365 (2016). Soakaway design

Ref: 21.14 Department for Environmental, Food & Rurual Affairs (March 2015). Non-statutory technical standards for the design, maintenance and operation of sustainable drainage systems to drain surface water [Online]. Accessed July 2017.

Ref: 21.15 UK Climate Projections science report: Climate change projections, Version 3, updated December 2010.

Ref: 21.16 Environment Agency Flood risk assessments: climate change allowances, online (<u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>) [Accessed February 2016, April 2016, June 2016 and September 2016];



### Appendices



### Appendix A – Site Location Plan



<sup>©</sup> Crown copyright and database rights 2016. Ordnance Survey 0100031673



#### LEGEND



Proposed Converter Station Zone



Proposed Converter Station Site

Application Boundary



#### **REVISION:**

| REV. | DATE     | DESCRIPTION    |
|------|----------|----------------|
| 1    | 04/07/17 | ORIGINAL ISSUE |
|      |          |                |
|      |          |                |
|      |          |                |
|      |          |                |

#### FIGURE NO.

VL\_170815\_ES-4-C.03 CH19 SURFACE WATER DRAINAGE ASSESSMENT FIGURE TITLE

APPENDIX A SITE LOCATION PLAN

#### SHEET NUMBER

1 of 1

NOTES

Date:

15/08/17



### Appendix B – Hydraulic Calculations

| RPS P&D                                |                      |                   |                   |               | Page 1   |
|----------------------------------------|----------------------|-------------------|-------------------|---------------|----------|
| 20 Milton Park                         | VIKINO               | G INTERC          | CONNECT           | OR            |          |
| Abingdon                               | CONVER               | RTER STA          | TION S            | ITE           | L.       |
| Oxfordshire OX14 4SH                   | Pond 2               | 20% CC            |                   |               | Micco    |
| Date 15/08/2017 11:01                  | Desigr               | ned by J          |                   |               |          |
| File Pond 20% - 11.10 l per            | Checke               | ed by J.          | R                 |               | Digitigh |
| Causeway                               | Source               | e Contro          | 1 2014            | .1.1          |          |
|                                        |                      |                   |                   |               |          |
| Summary of Results f                   | for 100              | year Re           | eturn P           | eriod (+20%)  |          |
| Storm No.                              |                      | Man               | Mass              | <u>Ototuo</u> |          |
| Event Lev                              | ix Max<br>vel Depti  | Max<br>Control    | Volume            | Status        |          |
| (n                                     | n) (m)               | (1/s)             | (m <sup>3</sup> ) |               |          |
| 15 min Cummon 0 1                      | E1 0 4E              | 10.0              | 2714 2            | 0 17          |          |
| 30 min Summer 9.2                      | 215 0.515            | L 10.9<br>5 10.9  | 3115.7            | 0 K           |          |
| 60 min Summer 9.2                      | 287 0.58             | 7 10.9            | 3570.2            | 0 K           |          |
| 120 min Summer 9.3                     | 366 0.66             | 5 10.9            | 4078.4            | O K           |          |
| 180 min Summer 9.4                     | 16 0.71              | 5 10.9            | 4398.5            | O K           |          |
| 240 min Summer 9.4                     | 152 0.752            | 2 10.9            | 4634.1            | O K           |          |
| 360 min Summer 9.5                     | 504 0.804            | 1 10.9            | 4974.9            | O K           |          |
| 480 min Summer 9.5                     | 541 0.84             | L 10.9            | 5216.9            | O K           |          |
| 600 min Summer 9.5                     | 569 0.869            | 9 10.9            | 5401.6            | ОК            |          |
| /20 min Summer 9.5                     | 91 0.89.             | L 10.9            | 5548.2            | OK            |          |
| 960 min Summer 9.6                     | 57 0.95<br>597 0 99' | 7 10.9<br>7 10.9  | 6256 9            | 0 K           |          |
| 2160 min Summer 9.7                    | 746 1.040            | , 10.9            | 6593.1            | Flood Risk    |          |
| 2880 min Summer 9.7                    | 71 1.071             | L 10.9            | 6761.1            | Flood Risk    |          |
| 4320 min Summer 9.7                    | 08 1.008             | 3 10.9            | 6332.1            | Flood Risk    |          |
| 5760 min Summer 9.6                    | 541 0.943            | L 10.9            | 5881.2            | O K           |          |
| 7200 min Summer 9.5                    | 84 0.884             | 10.9              | 5502.6            | O K           |          |
| 8640 min Summer 9.5                    | 534 0.834            | 1 10.9            | 5171.1            | ОК            |          |
| 10080 min Summer 9.4                   | 187 0.78<br>0.4 0 EQ | / 10.9            | 4864.3            | OK            |          |
| 15 Min Winter 9.2<br>30 min Winter 9.2 | 204 0.504            | ± 10.9<br>5 10.9  | 3045.4            | 0 K<br>0 K    |          |
| JU MIN WINCEL J.2                      |                      | 10.9              | 5490.5            | 0 1           |          |
|                                        |                      |                   |                   |               |          |
|                                        |                      |                   |                   |               |          |
| Storm<br>Event (r                      | Rain F.<br>m/hr) V   | Looded Di         | .scharge          | Time-Peak     |          |
|                                        | uu(/111) V           | (m <sup>3</sup> ) | (m <sup>3</sup> ) | (mills)       |          |
|                                        |                      |                   |                   |               |          |
| 15 min Summer 18                       | 35.200               | 0.0               | 936.2             | 78            |          |
| 30 min Summer IC                       | 10.323<br>51 042     | 0.0               | 920.1<br>18/0 /   | 93<br>100     |          |
| 120 min Summer                         | 35.045               | 0.0               | 1806.8            | 180           |          |
| 180 min Summer 2                       | 25.331               | 0.0               | 1766.7            | 240           |          |
| 240 min Summer 2                       | 20.120               | 0.0               | 1727.8            | 298           |          |
| 360 min Summer 1                       | 14.543               | 0.0               | 1656.4            | 416           |          |
| 480 min Summer 1                       | 1.551                | 0.0               | 1613.8            | 534           |          |
| 600 min Summer                         | 9.661                | 0.0               | 1590.7            | 652           |          |
| /20 min Summer                         | 8.349<br>6.724       | 0.0               | 1500.1            | //0           |          |
| 900 min Summer<br>1440 min Summer      | 4.955                | 0.0               | 1628 5            | 1480          |          |
| 2160 min Summer                        | 3.652                | 0.0               | 3246.1            | 2192          |          |
| 2880 min Summer                        | 2.941                | 0.0               | 3287.0            | 2904          |          |
| 4320 min Summer                        | 2.038                | 0.0               | 3225.8            | 4328          |          |
| 5760 min Summer                        | 1.571                | 0.0               | 6516.7            | 5264          |          |
| 7200 min Summer                        | 1.284                | 0.0               | 6319.2            | 5920          |          |
| 8640 min Summer                        | 1.089                | 0.0               | 6096.9            | 6672          |          |
| 15 min Wintor 19                       | U.94/<br>35 200      | 0.0               | 0.0UEC<br>0 050   | /4U8<br>78    |          |
| 30 min Winter 10                       | 06.325               | 0.0               | 914.8             | 92            |          |
|                                        |                      |                   |                   |               |          |
| ©1982                                  | -2014 X              | P Solut           | ions              |               |          |

| RPS P&D                              |                    |                |           |                | Page 2  |
|--------------------------------------|--------------------|----------------|-----------|----------------|---------|
| 20 Milton Park                       | VIKI               | NG INTER       | RCONNECT  | ľOR            |         |
| Abingdon                             | CONVE              | ERTER ST       | FATION S  | SITE           | r.      |
| Oxfordshire OX14 4SH                 | Pond               | 20% CC         |           |                | Micco   |
| Date 15/08/2017 11:01                | Desig              | gned by        | J.R       |                |         |
| File Pond 20% - 11.10 l per          | Checl              | ked by d       | J.R       |                | Digitig |
| Causeway                             | Sour               | ce Conti       | rol 2014  | 1.1.1          |         |
|                                      |                    |                |           |                |         |
| Summary of Results                   | for 10             | 0 year         | Return i  | Period (+20%)  |         |
| Storm M                              | av Ma              | w Mow          | Маж       | Status         |         |
| Event Le                             | ax Ma<br>vel Dep   | th Contro      | ol Volume | scacus         |         |
| (1                                   | m) (m              | ) (l/s         | ) (m³)    |                |         |
| Co min Minton O                      |                    | FF 10          | 0 4007 0  | 0 4            |         |
| 60 min Winter 9.<br>120 min Winter 9 | 333 U.6<br>444 0 7 | 55 IU<br>44 10 | 9 4007.9  | ) OK           |         |
| 180 min Winter 9.                    | 500 0.8            | 00 10          | .9 4947.3 | O K            |         |
| 240 min Winter 9.                    | 541 0.8            | 41 10          | .9 5215.3 | З ОК           |         |
| 360 min Winter 9.                    | 599 0.8            | 99 10          | .9 5603.1 | . ОК           |         |
| 480 min Winter 9.                    | 641 0.9            | 41 10          | .9 5881.1 | . O K          |         |
| 600 min Winter 9.                    | 673 0.9            | 73 10          | .9 6095.5 | ОК             |         |
| 720 min Winter 9.                    | 698 0.9            | 98 10          | .9 6267.4 | I OK           |         |
| 960 min Winter 9.                    | /51 1.0            | 51 IU<br>22 10 | .9 6625.2 | Flood Risk     |         |
| 2160 min Winter 9.                   | 883 1 1            | 22 IU<br>83 IO | 9 7532 7  | / Flood Risk   |         |
| 2880 min Winter 9.                   | 917 1.2            | 17 10          | .9 7766.7 | / Flood Risk   |         |
| 4320 min Winter 9.                   | 859 1.1            | 59 10          | .9 7365.9 | ) Flood Risk   |         |
| 5760 min Winter 9.                   | 793 1.0            | 93 10          | .9 6912.1 | Flood Risk     |         |
| 7200 min Winter 9.                   | 726 1.0            | 26 10          | .9 6454.4 | Flood Risk     |         |
| 8640 min Winter 9.                   | 666 0.9            | 66 10          | .9 6046.8 | ) O K          |         |
| Storm                                | Rain               | Flooded 1      | Discharge | • Time-Peak    |         |
| Event (                              | mm/hr)             | Volume         | Volume    | (mins)         |         |
|                                      |                    | (m³)           | (m³)      |                |         |
| 60 min Winter                        | 61.042             | 0.0            | 1819.8    | 120            |         |
| 120 min Winter                       | 35.045             | 0.0            | 1746.3    | 178            |         |
| 180 min Winter                       | 25.331             | 0.0            | 1674.5    | 236            |         |
| 240 min Winter                       | 20.120             | 0.0            | 1628.3    | 294            |         |
| 360 min Winter                       | 14.543             | 0.0            | 1587.6    | 410            |         |
| 480 min Winter                       | 11.55L             | 0.0            | 1502.9    | 526            |         |
| ouu min Winter<br>720 min Winter     | 9.001<br>8 349     | 0.0            | 1616 C    | 04∠<br>) 756   |         |
| 960 min Winter                       | 6.724              | 0.0            | 1649.3    | 990            |         |
| 1440 min Winter                      | 4.955              | 0.0            | 1682.7    | 1454           |         |
| 2160 min Winter                      | 3.652              | 0.0            | 3375.2    | 2152           |         |
| 2880 min Winter                      | 2.941              | 0.0            | 3415.8    | 2844           |         |
| 4320 min Winter                      | 2.038              | 0.0            | 3338.5    | 4196           |         |
| 5760 min Winter                      | 1.571              | 0.0            | 6540.7    | 5496           |         |
| 7200 min Winter                      | 1.284              | 0.0            | 6385.2    | 6680           |         |
| 8640 min Winter<br>10080 min Winter  | 1.U89<br>0 0/7     | 0.0            | 6013 C    | 0902<br>1 7821 |         |
| 10000 MITH MINCEL                    | 0.94/              | 0.0            | 0043.0    | /024           |         |
|                                      |                    |                |           |                |         |
|                                      |                    |                |           |                |         |
|                                      |                    |                |           |                |         |
|                                      |                    |                |           |                |         |
|                                      |                    |                |           |                |         |
|                                      |                    |                |           |                |         |
|                                      |                    |                |           |                |         |

| RPS P&D                                             |                                                                                                                                                        |                                                                         |                                  |                                                                                 |                                                | Page 3                           |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|
| 20 Milton Park                                      | VIKIN                                                                                                                                                  | G INTERCONNI                                                            | ECTOR                            |                                                                                 |                                                | <b>,</b>                         |
| Abingdon                                            | CONVE                                                                                                                                                  | RTER STATIO                                                             | N SITE                           | 2                                                                               |                                                | Ly                               |
| Oxfordshire OX14 4SH                                | Pond 2                                                                                                                                                 | 20% CC                                                                  |                                  |                                                                                 |                                                | Mirro                            |
| Date 15/08/2017 11:01                               | Desig                                                                                                                                                  | ned by J.R                                                              |                                  |                                                                                 |                                                | Drainano                         |
| File Pond 20% - 11.10 l p                           | per Check                                                                                                                                              | ed by J.R                                                               |                                  |                                                                                 |                                                | Diamage                          |
| Causeway                                            | Source                                                                                                                                                 | e Control 2                                                             | 014.1.                           | .1                                                                              |                                                |                                  |
| Rain<br>Return Peri<br>Sit<br>Sum<br>Win            | Rainfall<br>Model<br>od (years)<br>te Location GB 5:<br>C (1km)<br>D1 (1km)<br>D2 (1km)<br>D3 (1km)<br>E (1km)<br>F (1km)<br>mer Storms<br>tter Storms | <u>Details</u><br>18400 336750 1                                        | 'F 1840                          | FE<br>10<br>0 3675<br>-0.02<br>0.29<br>0.34<br>0.19<br>0.30<br>2.51<br>Ye<br>Ye | H<br>0<br>1<br>6<br>4<br>2<br>7<br>7<br>5<br>5 |                                  |
|                                                     | Cv (Summer)                                                                                                                                            |                                                                         |                                  | 0.75                                                                            | 0                                              |                                  |
| Shortest St                                         | corm (mins)                                                                                                                                            |                                                                         |                                  | 1                                                                               | 5                                              |                                  |
| Longest St                                          | orm (mins)                                                                                                                                             |                                                                         |                                  | 1008                                                                            | 0                                              |                                  |
| Climat                                              | e Change %                                                                                                                                             |                                                                         |                                  | +2                                                                              | 0                                              |                                  |
|                                                     | <u>Time Area</u>                                                                                                                                       | a Diagram                                                               |                                  |                                                                                 |                                                |                                  |
|                                                     | Total Area                                                                                                                                             | (ha) 7.950                                                              |                                  |                                                                                 |                                                |                                  |
| Time (mins) Area Tim<br>From: To: (ha) From         | me (mins) Area<br>m: To: (ha)                                                                                                                          | Time (mins)<br>From: To:                                                | Area<br>(ha)                     | Time<br>From:                                                                   | (mins)<br>To:                                  | Area<br>(ha)                     |
| 0 4 0.500<br>4 8 0.500<br>8 12 0.500<br>12 16 0.500 | 16       20       0.500         20       24       0.500         24       28       0.500         28       32       0.500                                | 32       36         36       40         40       44         44       48 | 0.500<br>0.500<br>0.500<br>0.500 | 48<br>52<br>56<br>60                                                            | 52<br>56<br>60<br>64                           | 0.500<br>0.500<br>0.500<br>0.450 |
|                                                     |                                                                                                                                                        |                                                                         |                                  |                                                                                 |                                                |                                  |

| RPS P&D                                                                                                                        | Page 4                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 Milton Park                                                                                                                 | VIKING INTERCONNECTOR                                                                                                                                   |
| Abingdon                                                                                                                       | CONVERTER STATION SITE                                                                                                                                  |
| Oxfordshire OX14 4SH                                                                                                           | Pond 20% CC                                                                                                                                             |
| Date 15/08/2017 11:01                                                                                                          | Designed by J.R                                                                                                                                         |
| File Pond 20% - 11.10 l per                                                                                                    | . Checked by J.R                                                                                                                                        |
| Causeway                                                                                                                       | Source Control 2014.1.1                                                                                                                                 |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                | Model Details                                                                                                                                           |
| Storage is (                                                                                                                   | Online Course Louis (m) 10,000                                                                                                                          |
| Storage 15 C                                                                                                                   | Unifine Cover Lever (m) 10.000                                                                                                                          |
| Tank                                                                                                                           | c or Pond Structure                                                                                                                                     |
| Inv                                                                                                                            | vert Level (m) 8.700                                                                                                                                    |
| Depth (m) A                                                                                                                    | area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )                                                                                                 |
| 0.000                                                                                                                          | 5809.7   1.250 7009.0                                                                                                                                   |
| Hydro-Brake                                                                                                                    | e Optimum® Outflow Control                                                                                                                              |
| Un:                                                                                                                            | it Reference MD-SHE-0146-1110-1400-1110                                                                                                                 |
| Desia<br>Desia                                                                                                                 | n Flow (1/s) 1.400                                                                                                                                      |
|                                                                                                                                | Flush-Flo™ Calculated                                                                                                                                   |
|                                                                                                                                | Objective Minimise upstream storage                                                                                                                     |
|                                                                                                                                | lameter (mm) 146                                                                                                                                        |
| Minimum Outlet Pipe D                                                                                                          | iameter (mm) 225                                                                                                                                        |
| Suggested Manhole D:                                                                                                           | iameter (mm) 1200                                                                                                                                       |
| Control I                                                                                                                      | Points Head (m) Flow (l/s)                                                                                                                              |
| Design Point (                                                                                                                 | (Calculated) 1.400 11.0                                                                                                                                 |
|                                                                                                                                | Fiush-Flo® 0.882 8.8                                                                                                                                    |
| Mean Flow over                                                                                                                 | Head Range - 9.5                                                                                                                                        |
|                                                                                                                                |                                                                                                                                                         |
| The hydrological calculations have<br>Hydro-Brake Optimum® as specified.<br>Hydro-Brake Optimum® be utilised th<br>invalidated | been based on the Head/Discharge relationship for<br>Should another type of control device other than<br>hen these storage routing calculations will be |
| Depth (m) Flow (1/s) Depth (m) Fl                                                                                              | .ow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)                                                                                                     |
|                                                                                                                                |                                                                                                                                                         |
| 0.200 10.1 1.400                                                                                                               | 11.0 3.500 17.0 7.500 24.4                                                                                                                              |
| 0.300 10.8 1.600                                                                                                               | 11.7 4.000 18.1 8.000 25.2                                                                                                                              |
| 0.400 10.9 1.800                                                                                                               | 12.4 4.500 19.1 8.500 25.9                                                                                                                              |
| 0.500 10.9 2.000                                                                                                               | 13.0 5.000 20.1 9.000 26.7<br>13.6 5.500 21.0 9.500 27.4                                                                                                |
| 0.800 9.7 2.400                                                                                                                | 14.2 6.000 21.9                                                                                                                                         |
| 1.000 9.4 2.600                                                                                                                | 14.7 6.500 22.8                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |
|                                                                                                                                |                                                                                                                                                         |

| RPS P&D                          |                |          |          |                |             | Page 1   |
|----------------------------------|----------------|----------|----------|----------------|-------------|----------|
| 20 Milton Park                   | VIKI           | ING INTE | ERCON    | NECTOF         | ξ           |          |
| Abingdon                         | CONV           | /ERTER S | STATI    | ON SIT         | Έ           | L.       |
| Oxfordshire OX14 4SH             | Pond           | d 40% CC | 2        |                |             | Micco    |
| Date 15/08/2017 11:02            | Desi           | Igned by | Į J.R    |                |             |          |
| File Pond 40% - 11.10 l per      | . Chec         | cked by  | J.R      |                |             | Drainage |
| Causeway                         | Sour           | ce Cont  | rol      | 2014.1         | .1          |          |
|                                  |                |          |          |                |             |          |
| Summary of Results               | for 10         | 00 year  | Retu     | rn Pei         | riod (+40%) |          |
|                                  |                | -        |          |                | · · ·       |          |
| Storm                            | Max            | Max 1    | Max      | Max            | Status      |          |
| Event                            | Level          | Depth Co | ntrol    | Volume         |             |          |
|                                  | (m)            | (m) (1   | 1/s)     | (m³)           |             |          |
| 15 min Summer                    | 8.926          | 0.526    | 10.0     | 3176.5         | ОК          |          |
| 30 min Summer                    | 9.001          | 0.601    | 10.0     | 3646.8         | ОК          |          |
| 60 min Summer                    | 9.084          | 0.684    | 10.0     | 4178.9         | O K         |          |
| 120 min Summer                   | 9.177          | 0.777    | 10.0     | 4775.4         | ОК          |          |
| 240 min Summer                   | 9.234<br>9.277 | 0.034    | 10.0     | 5431.0         | OK          |          |
| 360 min Summer                   | 9.338          | 0.938    | 10.0     | 5834.9         | 0 K         |          |
| 480 min Summer                   | 9.382          | 0.982    | 10.0     | 6125.2         | O K         |          |
| 600 min Summer                   | 9.415          | 1.015    | 10.0     | 6349.3         | ОК          |          |
| 720 min Summer<br>960 min Summer | 9.442          | 1.042    | 10.0     | 6529.5         | OK          |          |
| 1440 min Summer                  | 9.572          | 1.172    | 10.0     | 7414.1         | O K         |          |
| 2160 min Summer                  | 9.637          | 1.237    | 10.2     | 7863.2         | ОК          |          |
| 2880 min Summer                  | 9.673          | 1.273    | 10.3     | 8111.7         | O K         |          |
| 4320 min Summer                  | 9.609          | 1.209    | 10.1     | 7671.4         | ОК          |          |
| 7200 min Summer                  | 9.332          | 1.132    | 10.0     | 6674.5         | OK          |          |
| 8640 min Summer                  | 9.410          | 1.010    | 10.0     | 6314.8         | ОК          |          |
| 10080 min Summer                 | 9.365          | 0.965    | 10.0     | 6013.0         | O K         |          |
| 15 min Winter                    | 8.988          | 0.588    | 10.0     | 3563.8         | ОК          |          |
| 30 min Winter                    | 9.070          | 0.670    | 10.0     | 4091.2         | ΟK          |          |
|                                  |                |          |          |                |             |          |
|                                  |                |          |          |                |             |          |
| Storm                            | Rain           | Flooded  | Disch    | arge T         | ime-Peak    |          |
| Event                            | (mm/hr)        | Volume   | Vol      | ume            | (mins)      |          |
|                                  |                | (m³)     | (m       | 3)             |             |          |
| 15 min Summer 2                  | 216.067        | 0.0      | 7        | 41.6           | 79          |          |
| 30 min Summer 3                  | 124.046        | 0.0      | 7        | 06.6           | 93          |          |
| 60 min Summer                    | 71.216         | 0.0      | 14       | 31.2           | 122         |          |
| 120 min Summer                   | 40.886         | 0.0      | 14       | 65.2           | 182         |          |
| 240 min Summer                   | 23.473         | 0.0      | 14       | 524.5          | 240<br>300  |          |
| 360 min Summer                   | 16.966         | 0.0      | 15       | 60.1           | 418         |          |
| 480 min Summer                   | 13.476         | 0.0      | 15       | 684.9          | 536         |          |
| 600 min Summer                   | 11.271         | 0.0      | 16       | 503.7          | 654         |          |
| 720 min Summer<br>960 min Summer | 9.741<br>7 811 | 0.0      | 16<br>16 | 18.3<br>545 2  | 1/2         |          |
| 1440 min Summer                  | 5.781          | 0.0      | 16       | 575.4          | 1484        |          |
| 2160 min Summer                  | 4.261          | 0.0      | 33       | 854.8          | 2196        |          |
| 2880 min Summer                  | 3.431          | 0.0      | 33       | 395.4          | 2908        |          |
| 4320 min Summer                  | 2.378          | 0.0      | 33       | 3/1.2<br>19/ 6 | 4332        |          |
| 7200 min Summer                  | 1.498          | 0.0      | 64<br>64 | 137.6          | 6264        |          |
| 8640 min Summer                  | 1.270          | 0.0      | 63       | 306.6          | 6960        |          |
| 10080 min Summer                 | 1.105          | 0.0      | 61       | 27.7           | 7712        |          |
| 15 min Winter 2                  | 216.067        | 0.0      | 7        | 108.4          | 78          |          |
| 30 min winter .                  | 124.046        | 0.0      | /        | 10.2           | 22          |          |
|                                  | 2 2014         | VD Cal   | ut i or  | ne             |             |          |
| ©198                             | Z-ZUI4         | AP SOL   | .ucroi   | 13             |             |          |

|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                        |                                                                                                                                                                                             |                                                                                                                                    | Page 2   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------|
| 20 Milton Park                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VIKI                                                                                                                           | NG INTER                                                                               | CONNECT                                                                                                                                                                                     | OR                                                                                                                                 |          |
| Abingdon                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CONVI                                                                                                                          | ERTER ST                                                                               | ATION S                                                                                                                                                                                     | ITE                                                                                                                                | 4        |
| Oxfordshire OX14 4SH                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pond                                                                                                                           | 40% CC                                                                                 |                                                                                                                                                                                             |                                                                                                                                    | Miccon   |
| Date 15/08/2017 11:02                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Desi                                                                                                                           | ned bv                                                                                 | J.R                                                                                                                                                                                         |                                                                                                                                    | MILIU    |
| File Pond 40% - 11 10                                                                                                                                                                            | l ner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chec                                                                                                                           | ked by J                                                                               | R                                                                                                                                                                                           |                                                                                                                                    | Drainage |
|                                                                                                                                                                                                  | - per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sour                                                                                                                           | ce Contr                                                                               | -1 2014                                                                                                                                                                                     | 1 1                                                                                                                                | 2        |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOUL                                                                                                                           |                                                                                        | 01 2014                                                                                                                                                                                     | • - •                                                                                                                              |          |
| Summary of                                                                                                                                                                                       | Results 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | for 10                                                                                                                         | 0 vear B                                                                               | eturn P                                                                                                                                                                                     | eriod (+40%)                                                                                                                       |          |
|                                                                                                                                                                                                  | itebureb i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 10                                                                                                                         | o year n                                                                               | ccurn r                                                                                                                                                                                     | <u>erroa (* 10 0)</u>                                                                                                              |          |
| Sto:                                                                                                                                                                                             | rm Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ax Ma                                                                                                                          | x Max                                                                                  | Max                                                                                                                                                                                         | Status                                                                                                                             |          |
| Eve                                                                                                                                                                                              | nt Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vel Dep                                                                                                                        | th Contro                                                                              | l Volume                                                                                                                                                                                    |                                                                                                                                    |          |
|                                                                                                                                                                                                  | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n) (m                                                                                                                          | ) (l/s)                                                                                | (m³)                                                                                                                                                                                        |                                                                                                                                    |          |
| 60 mir                                                                                                                                                                                           | Winter 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 163 0.7                                                                                                                        | 63 10.                                                                                 | 0 4689.3                                                                                                                                                                                    | 0 K                                                                                                                                |          |
| 120 mir                                                                                                                                                                                          | Winter 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 266 0.8                                                                                                                        | 66 10.                                                                                 | 0 5361.8                                                                                                                                                                                    | 0 K                                                                                                                                |          |
| 180 min                                                                                                                                                                                          | Winter 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 331 0.9                                                                                                                        | 31 10.                                                                                 | 0 5788.8                                                                                                                                                                                    | O K                                                                                                                                |          |
| 240 min                                                                                                                                                                                          | Winter 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 379 0.9                                                                                                                        | 79 10.                                                                                 | 0 6105.5                                                                                                                                                                                    | O K                                                                                                                                |          |
| 360 min                                                                                                                                                                                          | Winter 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 447 1.0                                                                                                                        | 47 10.                                                                                 | 0 6567.4                                                                                                                                                                                    | O K                                                                                                                                |          |
| 480 min                                                                                                                                                                                          | Winter 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 497 1.0                                                                                                                        | 97 10.                                                                                 | 0 6902.1                                                                                                                                                                                    | O K                                                                                                                                |          |
| 600 min<br>720 min                                                                                                                                                                               | Winter 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 535 1.1<br>566 1 1                                                                                                             | 35 10.                                                                                 | 0 7162.8                                                                                                                                                                                    | O K                                                                                                                                |          |
| 960 mir                                                                                                                                                                                          | Winter 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500 I.I<br>630 1 2                                                                                                             | 30 10.                                                                                 | U 7374.2<br>1 7813 8                                                                                                                                                                        | 0 K<br>0 K                                                                                                                         |          |
| 1440 mir                                                                                                                                                                                         | Winter 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 718 1.3                                                                                                                        | 18 10.                                                                                 | 4 8422.8                                                                                                                                                                                    | Flood Risk                                                                                                                         |          |
| 2160 min                                                                                                                                                                                         | Winter 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 797 1.3                                                                                                                        | 97 10.                                                                                 | 6 8983.0                                                                                                                                                                                    | Flood Risk                                                                                                                         |          |
| 2880 min                                                                                                                                                                                         | Winter 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 845 1.4                                                                                                                        | 45 10.                                                                                 | 7 9319.0                                                                                                                                                                                    | Flood Risk                                                                                                                         |          |
| 4320 min                                                                                                                                                                                         | Winter 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 792 1.3                                                                                                                        | 92 10.                                                                                 | 6 8946.2                                                                                                                                                                                    | Flood Risk                                                                                                                         |          |
| 5760 min                                                                                                                                                                                         | Winter 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 726 1.3                                                                                                                        | 26 10.                                                                                 | 4 8482.9                                                                                                                                                                                    | Flood Risk                                                                                                                         |          |
| 7200 min                                                                                                                                                                                         | Winter 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 655 1.2<br>502 1 1                                                                                                             | 55 10.                                                                                 | 2 7984.7                                                                                                                                                                                    | OK                                                                                                                                 |          |
| 10080 mir                                                                                                                                                                                        | Winter 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 502 I.I<br>524 1 1                                                                                                             | 24 10.                                                                                 | 0 7483.3                                                                                                                                                                                    | 0 K                                                                                                                                |          |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                        |                                                                                                                                                                                             |                                                                                                                                    |          |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |                                                                                        |                                                                                                                                                                                             |                                                                                                                                    |          |
| Ste                                                                                                                                                                                              | orm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rain                                                                                                                           | Flooded D                                                                              | ischarge                                                                                                                                                                                    | Time-Peak                                                                                                                          |          |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                | V/A 1 1100A                                                                            |                                                                                                                                                                                             | (111119)                                                                                                                           |          |
| Eve                                                                                                                                                                                              | ent (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mm/hr)                                                                                                                         | (m <sup>3</sup> )                                                                      | (m <sup>3</sup> )                                                                                                                                                                           | (11113)                                                                                                                            |          |
| Ev                                                                                                                                                                                               | ent (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mm/hr)                                                                                                                         | (m <sup>3</sup> )                                                                      | (m <sup>3</sup> )                                                                                                                                                                           | (                                                                                                                                  |          |
| 60 mi                                                                                                                                                                                            | ent (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mm/hr)                                                                                                                         | (m <sup>3</sup> )                                                                      | (m <sup>3</sup> )                                                                                                                                                                           | 122                                                                                                                                |          |
| 60 mi<br>120 mi                                                                                                                                                                                  | ent (n<br>.n Winter (<br>.n Winter (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>mm/hr)</b><br>71.216<br>40.886                                                                                              | (m <sup>3</sup> )<br>0.0<br>0.0                                                        | (m <sup>3</sup> )<br>1453.4<br>1511.8                                                                                                                                                       | 122<br>180<br>236                                                                                                                  |          |
| 60 mi<br>120 mi<br>180 mi<br>240 mi                                                                                                                                                              | ent (1<br>.n Winter :<br>.n Winter :<br>.n Winter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm/hr)<br>71.216<br>40.886<br>29.552<br>23.473                                                                                 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0                                                 | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7                                                                                                                                   | 122<br>180<br>236<br>294                                                                                                           |          |
| 60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi                                                                                                                                                    | ent (1<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mm/hr)<br>71.216<br>40.886<br>29.552<br>23.473<br>16.966                                                                       | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8                                                                                                                         | 122<br>180<br>236<br>294<br>410                                                                                                    |          |
| 60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi                                                                                                                                          | ent (1<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm/hr)<br>71.216<br>40.886<br>29.552<br>23.473<br>16.966<br>13.476                                                             | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6                                                                                                               | 122<br>180<br>236<br>294<br>410<br>526                                                                                             |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi                                                                                                                          | ent (n<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :<br>.n Winter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mm/hr)<br>71.216<br>40.886<br>29.552<br>23.473<br>16.966<br>13.476<br>11.271                                                   | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0       | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7                                                                                                     | 122<br>180<br>236<br>294<br>410<br>526<br>642                                                                                      |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi                                                                                                                | ent (n<br>.n Winter :<br>.n Winter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741</pre>                                                       | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5                                                                                           | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758                                                                               |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi                                                                                                      | ent (n<br>.n Winter<br>.n Winter<br>.n Winter<br>.n Winter<br>.n Winter<br>.n Winter<br>.n Winter<br>.n Winter<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844</pre>                                                 | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6                                                                                 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992                                                                        |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi                                                                                           | ent (n<br>.n Winter<br>.n Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261</pre>                                     | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4                                                                       | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156                                                        |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi                                                                                | ent (n<br>n Winter :<br>n Winter : | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431</pre>                               | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0                                                   | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br>2852                                                |          |
| Ev.<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi                                                         | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378</pre>                         | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9                                         | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br>2852<br>4220                                        |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi                                               | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833</pre>                   | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4                               | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552                         |          |
| Eve<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi                                   | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498</pre>             | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2                     | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824                 |          |
| Evo<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi                        | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270</pre>       | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3           | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968         |          |
| Evo<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270 1.105</pre> | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |
| Evo<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi            | ent (n<br>.n Winter<br>.n Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270 1.105</pre> | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |
| Eve<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi                        | ent (n<br>.n Winter<br>.n Winter<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.498 1.270 1.105</pre>       | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |
| Eve<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi            | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270 1.105</pre> | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |
| Eve<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi            | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270 1.105</pre> | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |
| Eve<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi            | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270 1.105</pre> | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |
| Ev<br>60 mi<br>120 mi<br>180 mi<br>240 mi<br>360 mi<br>480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>7200 mi<br>8640 mi<br>10080 mi             | ent (n<br>.n Winter :<br>.n Winter                            | <pre>mm/hr) 71.216 40.886 29.552 23.473 16.966 13.476 11.271 9.741 7.844 5.781 4.261 3.431 2.378 1.833 1.498 1.270 1.105</pre> | (m <sup>3</sup> )<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (m <sup>3</sup> )<br>1453.4<br>1511.8<br>1547.3<br>1572.7<br>1607.8<br>1631.6<br>1648.7<br>1661.5<br>1684.6<br>1705.4<br>3444.2<br>3470.0<br>3404.9<br>6661.4<br>6605.2<br>4281.3<br>5181.8 | 122<br>180<br>236<br>294<br>410<br>526<br>642<br>758<br>992<br>1458<br>2156<br><b>2852</b><br>4220<br>5552<br>6824<br>7968<br>8096 |          |

| RPS P&D                                                                    |                                 |              |               |                    |              |               |               |              |               |               | Page 3       | 8    |
|----------------------------------------------------------------------------|---------------------------------|--------------|---------------|--------------------|--------------|---------------|---------------|--------------|---------------|---------------|--------------|------|
| 20 Milton                                                                  | Park                            |              |               |                    | VIKIN        | G INTI        | ERCONNI       | ECTOR        |               |               | 5            |      |
| Abingdon                                                                   |                                 |              |               |                    | CONVE        | RTER S        | STATIO        | N SITE       | 2             |               | 12y          |      |
| Oxfordshir                                                                 | e OX1                           | 4 4SH        |               |                    | Pond         | 40% C(        | C             |              |               |               | Mirro        |      |
| Date 15/08                                                                 | /2017                           | 11:02        | _             |                    | Desig        | ned by        | y J.R         |              |               |               | Drain        | ane  |
| File Pond                                                                  | 40% -                           | 11.10        | l per         | •••                | Check        | ed by         | J.R           |              |               |               | Diani        | عباد |
| Causeway                                                                   | auseway Source Control 2014.1.1 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               | Rai                | nfall        | Deta          | ils           |              |               |               |              |      |
| Rainfall Model FEH                                                         |                                 |              |               |                    |              |               |               |              | Н             |               |              |      |
| Return Period (years) 100<br>Site Location GB 518400 336750 TF 18400 36750 |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            | C (1km) -0.021                  |              |               |                    |              |               |               |              | 1             |               |              |      |
|                                                                            |                                 |              |               | D1 (1km            | )            |               |               |              | 0.29          | 6             |              |      |
|                                                                            |                                 |              |               | D2 (1km<br>D3 (1km | )            |               |               |              | 0.34          | 4<br>2        |              |      |
|                                                                            |                                 |              |               | E (1km             | )            |               |               |              | 0.30          | 7             |              |      |
|                                                                            |                                 |              | Summo         | F (1km             | )            |               |               |              | 2.51          | 7             |              |      |
|                                                                            |                                 |              | Winte         | r Storm            | s            |               |               |              | Ye            | s             |              |      |
|                                                                            |                                 |              | Cv            | (Summer            | )            |               |               |              | 0.75          | 0             |              |      |
|                                                                            | c                               | Shortes      | Cv<br>t Stor  | (Winter<br>m (mins | )            |               |               |              | 0.84          | 0<br>5        |              |      |
|                                                                            |                                 | Longes       | t Stor        | m (mins            | )            |               |               |              | 1008          | 0             |              |      |
|                                                                            |                                 | Cl           | imate         | Change             | 010          |               |               |              | +4            | 0             |              |      |
|                                                                            |                                 |              |               | Tim                | e Area       | a Diac        | gram          |              |               |               |              |      |
|                                                                            |                                 |              |               | Tota               | l Area       | (ha) 7        | 7.950         |              |               |               |              |      |
| Time<br>From:                                                              | (mins)<br>To:                   | Area<br>(ha) | Time<br>From: | (mins)<br>To:      | Area<br>(ha) | Time<br>From: | (mins)<br>To: | Area<br>(ha) | Time<br>From: | (mins)<br>To: | Area<br>(ha) |      |
| 0                                                                          | 4                               | 0.500        | 16            | 20                 | 0.500        | 32            | 36            | 0.500        | 48            | 52            | 0.500        |      |
| 4                                                                          | 8                               | 0.500        | 20            | 24                 | 0.500        | 36            | 40            | 0.500        | 52            | 56            | 0.500        |      |
| 12                                                                         | 12                              | 0.500        | 24            | 28<br>32           | 0.500        | 40<br>44      | 44<br>48      | 0.500        | 56<br>60      | 60<br>64      | 0.300        |      |
|                                                                            |                                 |              |               |                    |              | l             |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               |                    |              |               |               |              |               |               |              |      |
|                                                                            |                                 |              |               | -1000              | 1 .          |               |               |              |               |               |              |      |
|                                                                            |                                 |              | (             | 01982-             | 2014 2       | KP Sol        | lutions       | 5            |               |               |              |      |

| RPS P&D                                                                                                                      |                                                                     |                                                          | Page 4                                        |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|
| 20 Milton Park                                                                                                               | VIKING INTERCONN                                                    | ECTOR                                                    |                                               |
| Abingdon                                                                                                                     | CONVERTER STATIO                                                    | N SITE                                                   | 4                                             |
| Oxfordshire OX14 4SH                                                                                                         | Pond 40% CC                                                         |                                                          | Micco                                         |
| Date 15/08/2017 11:02                                                                                                        | Designed by J.R                                                     |                                                          |                                               |
| File Pond 40% - 11.10 l per                                                                                                  | Checked by J.R                                                      |                                                          | Digiligh                                      |
| Causeway                                                                                                                     | Source Control 2                                                    | 014.1.1                                                  |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              | odel Details                                                        |                                                          |                                               |
| Storage is O                                                                                                                 | ine Cover Level (m)                                                 | 10.000                                                   |                                               |
| Tank                                                                                                                         | or Pond Structure                                                   |                                                          |                                               |
| Invo                                                                                                                         | t Level (m) 8.400                                                   |                                                          |                                               |
| Depth (m) Ar                                                                                                                 | a (m <sup>2</sup> ) Depth (m) Ar                                    | ea (m²)                                                  |                                               |
| 0.000                                                                                                                        | 5809.7 1.600                                                        | 7262.6                                                   |                                               |
| Hydro-Brake                                                                                                                  | Optimum® Outflow                                                    | Control                                                  |                                               |
| Uni                                                                                                                          | Reference MD-SHE-01                                                 | 36-1010-1700-101                                         | 0                                             |
| Desig                                                                                                                        | Head (m)                                                            | 1.70                                                     | 0                                             |
| Design                                                                                                                       | lush-Flo™                                                           | Calculate                                                | d                                             |
|                                                                                                                              | Objective Minimise                                                  | upstream storag                                          | e                                             |
| Dia                                                                                                                          | neter (mm)                                                          | 13                                                       | 6                                             |
| Inver<br>Minimum Outlet Bing Di                                                                                              | Level (m)                                                           | 7.90                                                     | 0                                             |
| Suggested Manhole Dia                                                                                                        | neter (mm)                                                          | 150                                                      | 0                                             |
| Control Po                                                                                                                   | .nts Head (m)                                                       | Flow (l/s)                                               |                                               |
| Design Point (C                                                                                                              | lculated) 1.700                                                     | 10.1                                                     |                                               |
|                                                                                                                              | lush-Flo™ 0.497                                                     | 10.0                                                     |                                               |
| Maar Elaw area                                                                                                               | Kick-Flo® 1.033                                                     | 8.0                                                      |                                               |
| Mean Flow over                                                                                                               | ead kange –                                                         | 8.8                                                      |                                               |
| The hydrological calculations have in Hydro-Brake Optimum® as specified.<br>Hydro-Brake Optimum® be utilised the invalidated | een based on the Hea<br>Should another type<br>n these storage rout | d/Discharge rela<br>of control devic<br>ing calculations | tionship for the<br>e other than a<br>will be |
| Depth (m) Flow (l/s) Depth (m) Flo                                                                                           | (1/s) Depth (m) Fl                                                  | ow (l/s) Depth (                                         | m) Flow (l/s)                                 |
| 0.100 4.9 1.200                                                                                                              | 8.5 3.000                                                           | 13.2 7.0                                                 | 00 19.7                                       |
| 0.200 8.7 1.400                                                                                                              | 9.2 3.500                                                           | 14.2 7.5                                                 | 20.4                                          |
|                                                                                                                              | 9.8 4.000                                                           | 15.1 8.0                                                 | 00 21.0<br>00 21.6                            |
| 0.500 10.0 2.000                                                                                                             | 10.9 5.000                                                          | 16.8 9.0                                                 | 00 22.3                                       |
| 0.600 9.9 2.200                                                                                                              | 11.4 5.500                                                          | 17.6 9.5                                                 | 00 22.8                                       |
| 0.800 9.5 2.400                                                                                                              | 11.8 6.000                                                          | 18.3                                                     |                                               |
| 1.000 8.3 2.600                                                                                                              | 12.3 6.500                                                          | TA.0                                                     |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |
|                                                                                                                              |                                                                     |                                                          |                                               |

### **CONTACT US**



You can find out more information by:



calling our freephone number: 0800 731 0561



Sending an email to: vikinglink@communityrelations.co.uk



Writing to our freepost address at: **FREEPOST VIKING LINK** 



Visiting our website at: www.viking-link.com

If you, or someone you know, would like information in Braille, audio, large print or another language, please call us on the freephone number above.