USULTING ENGINEERS

Preliminary Drainage Strategy

Project:

Plant Based Protein Extraction Facility, Rangell Gate, Spalding, Lincolnshire

Client:

Naylor Farms

Document Ref:	Revision: 00	Original Issue Date:	Author:
0371-REP-3000		21/04/2024	B. Jackson
Reason for Issue:	Revision Note:		
For Planning			

Contents

Introduction	
Existing Site	4
Site Topography	4
Ground Conditions	5
Surrounding Drainage	7
Surface Water Flood Risk	8
Development Proposals	8
Drainage Strategy	8
Surface Water Drainage	8
Infiltration	8
Watercourse	
Surface Water Sewer	
Run-off Rates	
Existing Drainage Arrangements	
Existing greenfield run-off	
Proposed Run-off	
Drainage Proposals	
Infiltration	12
Watercourses	
Surcharged Outfall	
Exceedance Flows	
Water Quality	15
Flood Risk off-site	17
Management/Maintenance	
Filter Strip	17
Hydrobrake Maintenance	
Detention Pond	
Swales	20
Catchpits	20
Pipework	20
Headwall	20
Foul Proposals	21
Connection to a Sewer	

Conclusion	24
Appendices	25
Appendix A – Proposed Drainage Calculations	25
Appendix B – Anglian Water Asset Maps	26

Figure 1 - Site Location	4
Figure 2 - BGS Bedrock Geology	
Figure 3 - BGS Superficial Deposits	6
Figure 4 - IDB Assets Local to Site	7
Figure 5 - Existing Greenfield Runoff Rates	11
Figure 6 - 3D View of Drainage Model	14
Figure 9 - Pollution hazard indices for different land use classifications	15
Figure 10 - Indicative SuDS mitigation indices for discharging to a surface water	15
Figure 11 - Foul Connection into Low Road	21
Figure 12 - Foul Connection into Matmore Gate	22

Introduction

Jackson consulting engineers have been appointed by Naylor Farms, to undertake a drainage strategy, forming part of the supporting evidence of the planning submission for the proposed plant based protein extraction facility, to land south of west of Rangal Gate, Spalding, near PE12 6FA. The following document is to assist the planners and Lead Local Flood Authority (LLFA) in demonstrating that the development is acceptable in terms of sustainable drainage strategy and flood risk as a result of the development.

Existing Site

The site lies to the west of Rangell Gate. An aerial location plan is shown in figure 1, please note that the red line is indicative and does not indicate the planning boundary.

Figure 1 - Site Location

Site Topography

A site survey has been carried, and can be found in the background of the site layout, which will be supplied as part of the overall planning submission pack for this scheme. The total site area is 5.7 hectares.

The development sits just south of Low Road (B1165), to the west of Rangell Gate and east of the A16. The current site has no access available to it. The field is currently used for crops, and has no buildings located on it.

The overall field, is bounded by ditches. The ditch to the western boundary is off the edge of the A16, and presumably serves as the drainage for that road. From the topographical survey levels, the ditch to the north boundary falls from west to east, with the eastern boundary having a very subtle fall heading south. The southern ditch falls east to west, towards the A16, although the A16 ditch was not surveyed, it appears that ditch is deeper than the field ditches. The ditches to the field is typically 0.7-0.9m deep. During a site walkover it was noted that the ditches contained well established reeds, and it was difficult to locate any culvert locations. One culvert location was noted to the southern ditch at the vehicle access point.

At present it is assumed that all ditches bounding the field (north, east, and south) are owned by the landowner serving the field and the ditches to the east and part of the north also serve the existing highway. It is assumed that the ditch to the west is outside of the site's boundary, serving the A16 and is owned and maintained by LCC, and the site walkover demonstrated that the fields ditches connect into this via. an open connection. It is reasonable to assume that the LCC ditch will have overall connectivity into either the main river or into the IDB ditches, and this has been tentatively confirmed by LCC.

The proposed site is to be accessed from a new entrance off Rangal Gate. The levels along the edge of Low Road at the existing junction, is approximately 3.00m AOD. A culvert will be required to the existing ditch – this will require byelaw consent.

The existing field levels are generally flat, with typically range from 2.65m and 2.75m AOD.

Ground Conditions

A phase 1 or 2 ground investigation report is not available for this site currently, and the findings of this section are based on publicly available information. A full ground investigation will be undertaken prior to detailed design and assessed by the appointed engineer.

The bedrock geology of the site is described as 'Oxford Clay Formation'. This generally indicates that deeper infiltration devices are not viable for the site to understand the full viability of infiltration.

The superficial deposits are described as 'Tidal Flat Deposits', consisting of clays and silts. This type of strata can offer some limited infiltration but is generally restricted by the underlying clay. Additionally, the soaked CBR's of the silty clay are likely to be poor and not allow the use of items such as unlined porous paving.

There is limited borehole information in close proximity of the site. Any ground water levels will need to be assessed at detailed design stage.

Both British Geological Survey definitions can be found respectively in figures 2 and 3 below.

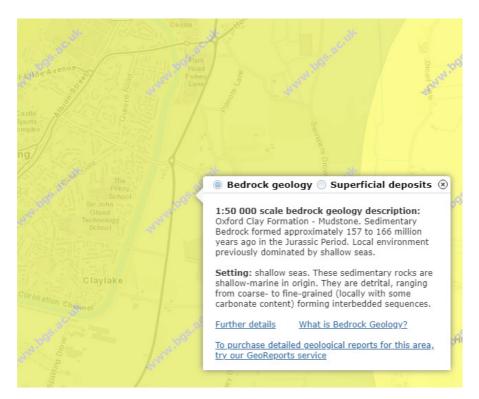


Figure 2 - BGS Bedrock Geology

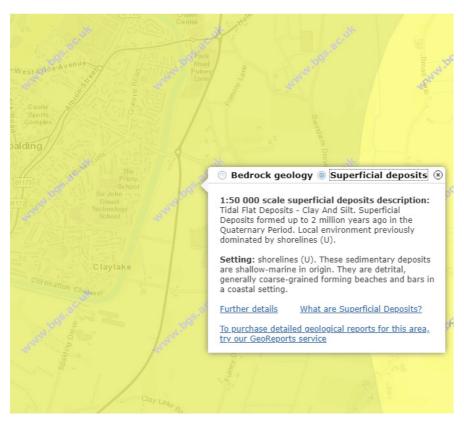


Figure 3 - BGS Superficial Deposits

Surrounding Drainage

The existing drainage for the site have already been described earlier in this document. No surface water sewers have been identified in close proximity of the site.

Overall, the development sits within South Holland Internal Drainage Boards district, specifically into Wisemans Catchment. The figure below shows the local assets in relation to the site. DRN193P1804 and 5 lie almost due east of the existing southern ditch within the landowners field. No evidence has been seen of a direct connection into this IDB ditch, and as the field ditch then proceeds to fall to the west it is unlikely that the site connects into the IDB ditch at this location.

Local to the A16, it is unclear where the A16 ditch flows into an IDB ditch, although it is assumed it does. There is an existing IDB drain to the west of the A16 (south west of the development) – DRN193P3402 which appears to connect into the A16 ditch which then flows east. It is unlikely that the drainage will have any direct connections into the Coronation Channel as the majority of the IDB drains are pumped.

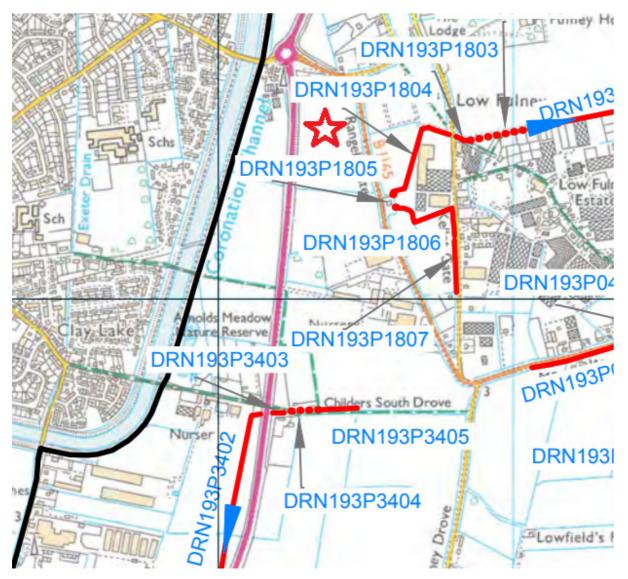


Figure 4 - IDB Assets Local to Site

Address: Red Lion Quarter, Red Lion Street, Spalding, Lincolnshire, PE11 1SX Telephone: 01775 729259 | Website: www.j-ce.co.uk | Email: enquiries@j-ce.co.uk Jackson Consulting Engineers is a trading name of Ben Jackson Consulting Ltd - Brunel House, Centre Park, 340 Firecrest Court, Warrington, WA1 1RG, reg no. 11709531

In summary, the site and general area is served by land drainage, being a mixture of private and LCC ditches before ultimately discharging into IDB drainage, although this will need to be fully determined at detailed design stage. The site will benefit from natural riparian rights, but any increase to greenfield discharge needs to be established with the LLFA and IDB. Improvements to the field ditches can readily be made as they are owned by the landowner.

The final discharge rates will need to be agreed with LCC/LLFA and SHIDB/WLMA, and a development contribution will need to be made for any discharge.

Surface Water Flood Risk

The existing flood risk for the site has been assessed by a different consultant and can be found within report: ECL0563-2/P&R. The FRA has recommendations for the finished floor levels and construction and should be fully referenced to develop the detailed drainage strategy.

The FRA should be fully referred to, but the general consensus is that there is no recommended minimum FFL as the building will be built with refuse points and flood resilient construction. Given the limited depth to the existing ditch it is proposed that the floors are to be raised a minimum level too ensure that a surface water gravity solution is feasible, this is not a recommendation for flood risk, just for ease of constructing drainage elements.

Development Proposals

The development consists of the construction of a new plant based protein extraction facility and ancillary office space together with landscaping, SuDS features, car park and associated infrastructure

Drainage Strategy

The following section provides narrative on the principles behind the drainage strategy and has been carried out in general accordance with Lincolnshire County Council's "Sustainable Drainage Design and Evaluation Guide" (SDDEG), and "CIRIA's C753 – the SUDS Manual", where appropriate.

Surface Water Drainage

For new developments there is a requirement to apply sustainable drainage principles (SuDS) to the disposal of surface water from the site where practicable. As required by Building Regulations and Defra's "Non-statutory Technical Standards for Sustainable Drainage Systems" (NTS), surface water must discharge to the following, listed in priority.

- 1. To ground in an adequate soakaway or some other adequate infiltration system.
- 2. To a watercourse.
- 3. To a surface water sewer, highway drain or other drainage system.
- 4. To a combined sewer.

Infiltration

During phase 1 of the development, basic infiltration testing has been undertaken to establish the general viability of infiltration. It is expected at detailed design, further testing will be completed.

Two different sets of testing was undertaken, the first test was to establish the viability of a drainage field for foul water – carried out in general accordance with building regulations and the second test to establish surface water drainage soakaway rates in general accordance with BRE365.

Foul Infiltration

The foul test, although undertaken in general accordance with building regulations, had a slightly different pit size, in this case being 400mm deep rather than 300mm deep. The recordings were still taken between 25 and 75% - when the water depth was between 300mm and 100mm depth. The top of test pit was taken at 500mm below ground levels. Due to access to the field, the testing was only undertaken once, and the purpose is to demonstrate overall viability of infiltration. As the total depth of water was 400mm rather than 300mm the equation is modified to represent a 200mm drop of water. The equation used for this exercise is;

$V_p = Time/200$

A summary of the results and infiltration rates are shown in the table below.

Trial Pit	Time taken to drop between 75% and 25%, seconds	Time/200 = V_p
	(minutes)	
1	1140 (19)	5.7
2	3240 (54)	16.2
3	9480 (158)	47.4
4	1080 (18)	5.4
5	1320 (22)	6.6

For infiltration to a drainage field to be viable then the VP rate should fall between 12 and 100. Although several of these results were below 12, it is likely that over the subsequent 2 tests at each hole location, this result would slow down. Additionally, test location 3 had a slow V_p rate, although given that all other test locations had a good rate of drop, it would be unreasonable to use the slowest rate for the entire area.

It should be noted that these infiltration rates are preliminary, and a full set of testing is required to establish the design rates and determine if all other ground conditions are suitable. Given the amount of water required to drain, it is unlikely that a drainage field is sufficient, and these results are just for viability.

Surface Water Infiltration

Two tests were undertaken for surface water disposal, in general accordance with BRE 365. Both pits were 1.5m long x 0.6m wide x 0.9m deep, each were filled with 0.9m of water and the time taken to drop 25% and 75% were recorded. Again, due to access to the field, the tests were only undertaken once for each pit. A summary of the results is shown in the table below.

Test Location	Time taken to drop between 75% and 25%, seconds	f
	minutes	
1	257	9.4x10 ⁻⁶ m/s
2	350	6.9x10 ⁻⁶ m.s

The infiltration rates show that the site has some infiltration potential, although the infiltration rates are slow, and are only likely to be slower for the 2^{nd} and 3^{rd} tests.

It should be noted that these infiltration rates are preliminary and a full set of testing is required to establish the design rates and determine if all other ground conditions are suitable.

Infiltration Summary

Subject to other factors stated in the foul drainage proposals section, there is potential that foul drainage can be discharge via. a drainage field, although the final design will be subject to complete testing, available space and most importantly, approval from the EA – given the volumes encountered.

The BRE 365 testing returned slow infiltration rates, and although the ground does infiltrate, as the results are slow it is likely that the entire site cannot be catered for through infiltration and will be subject to further testing. Parts of the storage features a likely to be unlined once they are out of there permeant water levels and these areas could partly infiltrate subject to full results becoming available and depth of the water table.

Although some limited infiltration can be achieved, the preliminary results are not high enough to allow infiltration to be solely used on site, but it will offer some benefit to allow low return period storm to be retained on the site.

Watercourse

As previously described, the site benefits from land drainage to the perimeter of the field, which currently serves the existing field and adopted highway. This ditch then connects into an assumed LCC ditch running alongside the A16, before assuming to connect into an IDB drain.

A connection into a watercourse is the most likely definitive connection, although the overall connection into the IDB system needs to be proven through detailed design, and rates will need to be agreed by LCC/LLFA and the IDB. Similar with the foul drainage discharge, the watercourse has potential to receive the treated water, subject to agreement with the IDB, LCC/LLFA and the EA.

Surface Water Sewer

There are no identified surface water sewers in the vicinity of the site. As a watercourse connection is viable, then there is no need for a surface water sewer to be considered.

Run-off Rates

Existing Drainage Arrangements

As the site is greenfield it has no current surface water drainage. The natural topography of the site directs surface runoff into the existing watercourses to the north, east and south of the site and will either flow directly overland or laterally within the strata layers, certainly as the underlying strata, would be considered as being very slow draining to impermeable once saturated.

Existing greenfield run-off

The greenfield run-off for the site is summarised in the figure below.

Page | **11**

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	6.72	6.72
1 in 1 year (l/s):	5.84	5.84
1 in 30 years (l/s):	16.46	16.46
1 in 100 year (l/s):	23.91	23.91
1 in 200 years (l/s):	28.28	28.28

Figure 5 - Existing Greenfield Runoff Rates

The Q_{BAR} greenfield run-off for the site is calculated at 6.7 l/s, and ideally the proposed discharge from the site should be restricted as close as practical to this rate.

The IDB also has a pumpable catchment rate of 1.4l/s. The total impermeable area of this scheme $34250m^2 - this$ includes the swale and basin areas, and this results in a discharge rate of 4.8l/s.

The HR Wallingford Greenfield runoff rate estimation for sites is an industry standard way to determine the greenfield run-off. The above calculation uses the IH124 method to determine the runoff.

Proposed Run-off

The greenfield run-off from the site should, as far as reasonably practical, not exceed the greenfield runoff rate for the Q_{BAR} event, which in this instance is 4.8 l/s. Therefore, the proposed discharge from the site will have a maximum runoff of 4.8 l/s, for all storms up to and including the 1 in 100 year + 40% climate change event. The post development run-off values are summarised in the table below. These figures represent the non-surcharged event. The full calculations can be found in appendix A.

Storm	Critical Flow
1 Year	4.8 l/s
2 Year	4.8 l/s
30 Year	4.8 l/s
100 Year	4.8 l/s
100 Year + 40% CC	4.8 l/s

The figures above demonstrate that the risk of flooding as a result of the development will actually lower the existing flood risk as it is being reduced below the natural QBAR discharge rates for the site. For the longer storm durations, the discharge from site has been significantly reduced, and this generally provides a good betterment for the scheme. As a result, the flood risk for the site is being reduced as a result of the development. At detailed design, and through negotiation with the IDB, it would be reasonable to increase the discharge rate to 6.7I/s, but this would incur an additional

development contribution. It is recommended that due to the size of the flow control and the available areas for SUDS features, that this lower rate is adhered to.

Drainage Proposals

The ethos for the drainage design is to try and mimic natural drainage as far as possible, and to ensure that as a result of the development, flood risk offsite is not increased. The following section demonstrates how this will be achieved and outline the general drainage strategy.

The proposed drainage strategy can be found on drawing 0371-JCE-00-SI-DR-C-3000.

Infiltration

The site is somewhat unique in its layout, in the fact that large areas of open space is being provided. These spaces feature tree planting, and a pond. As a result of this, there is an opportunity to offer infiltration areas over large areas such as infiltration blankets, with any planting in these areas being specified to allow for periods of saturated ground. This option is subject to further infiltration testing and therefore is not being fully explored at this stage, although the proposed drainage layout could be easily modified to accommodate infiltration. Notes on this potential can be found on the preliminary drainage strategy. The use of infiltration will be dependent on the foul drainage solution as infiltration features for surface water shall not be located in these areas. Regardless, it is not expected that infiltration will be able to fully accommodate the site, but could be used to help enhancements to the bio-diversity for example.

Watercourses

Although the final connectivity of the ditches is not known, it is reasonable to assume that the existing ditch on the site connects into an LCC ditch which then connects into the IDB network. Subject to final agreed run-off rates, and ruling out infiltration, it is proposed that the sites surface water drainage will connect into the existing field drain.

One of the main constraints of the site is the limited fall between the proposed/existing levels and invert level of the ditch, this is exacerbated by the scale of the development. The drainage proposals put forward bear these site constraints in mind.

The north of the site is occupied by staff carparking space and an access road. It is proposed that this area will flow overland into perimeter swales which then flow into the attenuation pond/basin.

The main concrete hardstanding serving the facility will discharge to a perimeter swale – to keep the internal drainage shallow it is proposed that surface conveyance channels will be used within the concrete itself. As the site is very flat, and the outfall depth shallow, it is proposed that the swale will be designed as wet swales, which reduces the need for a longitudinal fall.

The roof water will enter a piped network before discharging into the swales.

Where the storage tanks sit, they have been designed to sit in a bunded/sump area, this means that in the even that the tank splits, the spillage will be retained before an emergency clean up can be instigated. Minor spillages will be returned back into the tanks. The sump means that gravity drainage will not be feasible, unless significant raising of the building and remaining slab levels is undertaken (it is unlikely this is feasible). At present it is proposed that the pump will discharge into the attenuation pond/basin, although a storage tank will be required to allow the pump to discharge.

Some indicative figures have been provided on the drawing, but these will be subject to change at detailed design.

To ensure that contaminated water is not inadvertently pumped offsite, telemetry will be provided and on the presence of a spillage the pumps will be turned off, and the site management/emergency plan will be activated.

All of the site's surface water will ultimately discharge into the attenuation pond/basin, which will have a flow restriction before discharging into the fields ditch. The current proposal is for the pond to have a wet bed to provide amenity value for the site. This will create a permanent water level, and the water level will rise during storm events, helping to cycle the water.

The site has been designed to incorporate source control as far as reasonably practical, and it is our opinion that SUDS has been fully considered for this type of development, meeting all of the appropriate standards. All of the water from these sources will pass through at least two treatment devices.

The site utilises a Hydrobrake, which has a provisional opening size of 109mm to control the discharge to greenfield run-off rates. The surface water will pass through features such as reeds within the swale, filter strips and the pond, and therefore the risk of blockage is low as debris will be filtered before entering the Hydrobrake. If the Hydrobrake was to become blocked, or a higher storm period encountered then there would be more flooding than currently modelled. A provisional flood route is shown on the proposed drainage plans, but to summarise, flood water would flow towards the attenuation basin, utilise the freeboard, then overtop into the existing watercourse, away from any buildings.

The system has been designed so that there is no above ground flooding for the 1 in 30-year event and all flooding up to and including the 1 in 100 year + 40% climate change event is contained within the site. The calculations demonstrate that the 1 in 30-year storm event is stored below ground. For the 1 in 100-year + 40% climate change event, there is some minor flooding – a total of approximately 55m³ located in the channels of the concrete hardstanding – this would easily dissipate into the surrounding area (typically towards swales. A 3D schematic of the drainage model is shown in the figure below.

The proposed drainage layout is shown on JCE drawing 0371-JCE-00-SI-DR-C-3000 which has been provided in the overall planning submission related to this application.

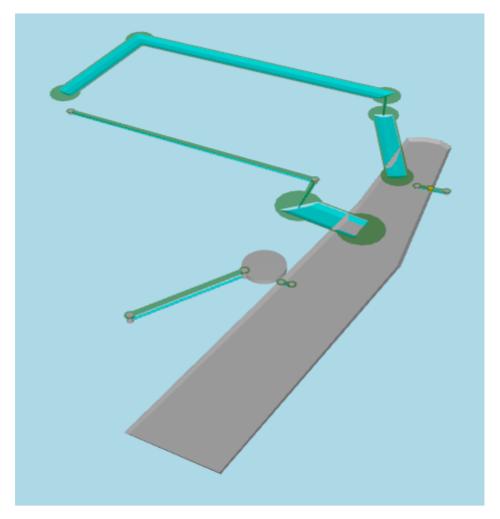


Figure 6 - 3D View of Drainage Model

Surcharged Outfall

During storm events, it is unknown if the water in the existing watercourse network will surcharge the outfall device, which needs to be considered. As this cannot be determined, the model has included a surcharged outfall for the worst case storms, the 1 in 100 year + 40% CC event. As the water levels are not known a surcharge depth of 0.5m has been assumed. A flap valve is to be fitted downstream of the Hydrobrake to ensure offsite water does not enter the site.

Exceedance Flows

There is always the possibility that a device can become temporarily blocked or fail, resulting in the system flooding. Additionally, the site has been designed up to and including storms of 1 in 100 year + 40% climate change, any storms greater than this will cause above ground flooding. The proposed flood routing in storms of exceedance or device failure can be found on the drainage drawing. The top of bank for the pond is set at 2.80m AOD, which is slightly above the surrounding levels – but this will allow some of the arisings to be reused on site. The modelled water level in the pond during the critical 1 in 100 year + 40% storm event is 2.372m AOD, therefore more than 400mm of free board is being provided, which is appropriate for this type of scheme. Free board to the building's FFL is more than 900mm.

Water Quality

The methods of surface water disposal mentioned above have included provisions for water quality. In accordance with CIRIA C753, the pollution hazard features for the drainage areas are:

- Other roofs
- Low
- Non-residential parking Low
- Commercial yard and delivery areas Medium

To remove the pollution risks, CIRA have developed 'Pollution hazard indices' and the 'mitigation indices' that the SuDS components provide, further details of these are found in figures 8 and 9 below. This simple approach is considered suitable for this type of development.

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ Industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) le < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.8*	0.8*	0.9*

Figure 7 - Pollution hazard indices for different land use classifications

	Mitigation indices ¹		
Type of SuDS component	TSS	Metals	Hydrocarbons
Fliter strip	0.4	0.4	0.5
Filter drain	0.4 ²	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond ⁴	0.78	0.7	0.5
Wetland	0.8 ³	0.8	0.8
Proprietary treatment systems ^{s,a}	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for innow concentrations relevant to the contributing drainage area.		

Figure 8 - Indicative SuDS mitigation indices for discharging to a surface water

To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant type) that equals or exceeds the pollution hazard index (for each contaminant type):

Total SuDS mitigation index ≥ pollution hazard index (for each contaminant type) (for each contaminant type)

Where the mitigation index of an individual component is insufficient, two components (or more) in series will be required where:

Total SuDS mitigation index = mitigation index₁ + 0.5 (mitigation index₂)

Where:

Mitigation index_n = mitigation index for component n

Provided the total SuDS mitigation index exceeds the pollution hazard indices, then sufficient water quality will be provided.

For the calculations below the hazards are represented by;

Total suspended solids	= Red
Metals	= Blue
Hydrocarbons	= Green

The figures are presented to show the actual achieved in the right-hand side column. The right-hand side's total must be higher than the left-hand side.

Roof areas

The roof water enters the below ground pipework directly, before passing into a swale, before ultimately discharging into the attenuation pond. The mitigation for this area is:

0.3 0.8 0.05 = Swale 0.5 0.6 0.6 + ½ Detention Basin 0.7 0.7 0.5 – Total 0.85 0.95 0.85

The mitigation provided by the swale and detention pond creates enough water quality improvement for this aspect of the development.

Non-residential parking

The non-residential parking will pass overland into the swale before discharging into the detention basin. The mitigation for this area is:

0.5 0.4 0.4 = Swale 0.5 0.6 0.6 + ½ Detention Basin 0.7 0.7 0.5 – Total 0.85 0.95 0.85

The mitigation provided by the swale and detention pond creates enough water quality improvement for this aspect of the development.

Commercial Yard and Delivery Areas

The commercial yard and delivery area will drain into a swale, before discharging into the detention pond. The mitigation for this area is:

0.7 0.6 0.7 = Swale 0.5 0.6 0.6 + ½ Detention Basin 0.7 0.7 0.5 – Total 0.85 0.95 0.85

The mitigation provided by the swale and detention pond creates enough water quality improvement for this aspect of the development.

All the methods above provide enough water quality in accordance with CIRIA's C753 document or a suitable compared to the existing drainage arrangements. Further evidence will need to be provided at detailed design stage. In some instances the water will also pass over a filter strip which will improve the water quality further.

Flood Risk off-site

As the flow from site will be restricted to below greenfield runoff rates (the pumpable rate is lower than natural run-off rate), the flood risk offsite has not been increased as a result of the development, and for the higher storm durations it has been decreased.

Management/Maintenance

It is crucial that the elements mentioned in the drainage elements and water quality are maintained to a sufficient standard to ensure that the devices can still function as designed. Generally, the maintenance requirements are either from CIRIA 753, or manufacturer guidance. It is currently assumed that the building's management will maintain the SUDS devices.

The devices outlined below are preliminary only and subject to detailed design.

Filter Strip

Operation and maintenance requirements for filter strips			
Maintenance schedule	Required action	Typical frequency	
	Remove litter and debris	Monthly (or as required)	
	Cut the grass – to retain grass height within specified design range	Monthly (during growing season), or as required	
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)	
Regular maintenance	Inspect filter strip surface to identify evidence of erosion, poor vegetation growth, compaction, ponding, sedimentation and contamination (eg oils)	Monthly (at start, then half yearly)	
	Check flow spreader and filter strip surface for even gradients	Monthly (at start, then half yearly)	
	Inspect gravel flow spreader upstream of filter strip for clogging	Monthly (at start, then half yearly)	
	Inspect silt accumulation rates and establish appropriate removal frequencies	Monthly (at start, then half yearly)	
Occasional maintenance	Reseed areas of poor vegetation growth; alter plant types to better suit conditions, if required	As required or if bare soil is exposed over > 10% of the filter strip area.	
	Repair erosion or other damage by re-turfing or reseeding	As required	
	Relevel uneven surfaces and reinstate design levels	As required	
Remedial actions	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required	
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required	
	Remove and dispose of oils or petrol residues using safe standard practices	As required	

Hydrobrake Maintenance

Maintenance

Normally, little maintenance is required as there are no moving parts within the Flow Control. Experience has shown that if blockages occur they do so at the intake, and the cause on such occasions has been due to a lack of attention to engineering detail such as approach velocities being too low, inadequate benching, or the use of units below the minimum recommended size. The Flow Control (where applicable) is fitted with a pivoting bypass door, which allows the manhole chamber to be drained down should blockage occur. The smaller conical units, below the minimum recommended size, are also supplied with rodding facilities or vortex suppressor pipes as standard.

Following installation of the Flow Control it is vitally important that any extraneous material i.e. building materials are removed from the unit and the chamber. After the system is made live, and assuming that the chamber design is satisfactory, it is recommended that each unit be inspected monthly for three months and thereafter at six monthly intervals with hose down if required. If problems are experienced, please do not hesitate to contact the company so that an investigation may be made.

All Flow Control units are typically manufactured from grade 304 Stainless Steel, and if required they can also be manufactured in grade 316 Stainless Steel. Both materials have an estimated life span in excess of the design life of drainage systems.

Detention Pond

Maintenance schedule	Required action	Typical frequency
	Remove litter and debris	Monthly (or as required)
	Cut the grass – public areas	Monthly (during growing season)
	Cut the meadow grass	Half yearly (spring, before nesting season, and autumn)
	Inspect marginal and bankside vegetation and remove nuisance plants (for first 3 years)	Monthly (at start, then as required)
	Inspect inlets, outlets, banksides, structures, pipework etc for evidence of blockage and/or physical damage	Monthly
	Inspect water body for signs of poor water quality	Monthly (May – October)
Regular maintenance	Inspect silt accumulation rates in any forebay and in main body of the pond and establish appropriate removal frequencies; undertake contamination testing once some build-up has occurred, to inform management and disposal options	Half yearly
	Check any mechanical devices, eg penstocks	Half yearly
	Hand cut submerged and emergent aquatic plants (at minimum of 0.1 m above pond base; include max 25% of pond surface)	Annually
	Remove 25% of bank vegetation from water's edge to a minimum of 1 m above water level	Annually
	Tidy all dead growth (scrub clearance) before start of growing season (Note: tree maintenance is usually part of overall landscape management contract)	Annually
	Remove sediment from any forebay.	Every 1–5 years, or as required
	Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays.	Every 5 years, or as required
Occasional maintenance	Remove sediment from the main body of big ponds when pool volume is reduced by 20%	With effective pre-treatment, this will only be required rarely, eg every 25–50 years
	Repair erosion or other damage	As required
	Replant, where necessary	As required
Remedial actions	Aerate pond when signs of eutrophication are detected	As required
	Realign rip-rap or repair other damage	As required
	Repair / rehabilitate inlets, outlets and overflows.	As required

Typical frequency Maintenance schedule **Required** action Remove litter and debris Monthly, or as required Cut grass - to retain grass height within Monthly (during growing season), specified design range or as required Manage other vegetation and remove Monthly at start, then as required nuisance plants Inspect inlets, outlets and overflows for Monthly blockages, and clear if required Regular maintenance Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas Monthly, or when required where water is ponding for > 48 hours Monthly for 6 months, guarterly for Inspect vegetation coverage 2 years, then half yearly Inspect inlets and facility surface for silt accumulation, establish appropriate silt Half yearly removal frequencies As required or if bare soil is Reseed areas of poor vegetation growth, alter Occasional maintenance exposed over 10% or more of the plant types to better suit conditions, if required swale treatment area Repair erosion or other damage by re-turfing or As required reseeding Relevel uneven surfaces and reinstate design As required levels Scarify and spike topsoil layer to improve Remedial actions infiltration performance, break up silt deposits As required and prevent compaction of the soil surface Remove build-up of sediment on upstream As required gravel trench, flow spreader or at top of filter strip Remove and dispose of oils or petrol residues As required using safe standard practices

Swales

Catchpits

Catchpits are utilised to help prevent the ingress of heavy sediment and other debris from entering the system. Maintenance requirements are low, and it is recommended that catchpits are inspected every six months and any build-up of sediment removed.

Pipework

If sediment in the catchpits are above the incoming pipes, or if performance of the site is hampered, then the pipes are to be inspect and jetted as necessary. The condition of the pipes shall generally be checked at the catchpit inspections.

Headwall

The headwall, and bed of the watercourse at that location is to be inspected every 12 months, and any signs of wear, or erosion are to be addressed.

Foul Proposals

Unlike surface water drainage, the preference for foul water disposal is to connect into a sewer, and only where this is not a viable option should other means of drainage be considered.

Connection to a Sewer

Extracts of the Anglian Water asset maps are shown in the figures below, with the full asset maps being provided in appendix D. The first figure shows a foul connection, reference 0801, in Low Road to the east of the entrance of the site. The length of this connection would be approximately 590m, and it would have to go through a busy roundabout and over a bridge. As a result of this, this connection point is not deemed suitable due to the cost, but more importantly the disruption of the works.

The second figure shows an existing riser main to the south of the site, with the majority of the line of riser main being within the landowners land. This connects into an existing pumping station in Matmore Gate. The length of connection to this point would be approximately 0.70km, and although this is significantly further than the other closest sewer, it would be easier to construct, although a limiting factor would be, similar to the first connection point, crossing the river and A16, and therefore this connection point is also not deemed suitable, again due to the cost, but more importantly the disruption of the works.

Figure 9 - Foul Connection into Low Road

Figure 10 - Foul Connection into Matmore Gate

At present, the total number of people proposed to work in this development is 60. Under 'British Water Flows and Loads', an 'office/factory without canteen' should allow for 50 litres per person per day. This means that minimum storage of 3000 litres is required for a pumping station – this is to comply with building regulations.

Additionally, as part of the processes on site, there will be waste water from cabbage washing. As these sites are innovators in the field, it is proposed that a large amount of the water used in the process is either directly recycled into the system, evaporates into the air, or is turned into a 'gel' which is then used for other industries – this is converted, stored on site and the transported away.

Through all of the processes involved, the final discharge still amounts to 10m³, with the domestic type waste generated from the workers, this amounts to a total of 13m³ per day. Although in the scheme of things this is a modest amount, it exceeds the amount that the EA will allow without a permit. Permits should only be granted in exception circumstances, which is detailed further below.

One of the criteria for a reasonable connection is the length of the connection. The EA consider a connection be made to the public sewer if the distance of the closest sewer falls within the following condition.

Divide the maximum volume in cubic metres that you want to discharge from those other premises by 0.75 (1 cubic metre is 1000 litres). Multiply the result by 30 metres. This will give you a result in metres.

The daily volume of discharge from the site will not exceed $13m^3$. With the EA's formula, this gives a distance of approximately 520m (($13m^3/0.75$)*30). This means that the current identified sewer is not within the limit of this.

The EA states 'If there is a good reason why you cannot connect to the public foul sewer (for example, if there is a river or a railway line in the way) then you must apply for a permit. You must provide evidence to justify this when you apply'. In this sites case, either connection will need to cross the A16 or a river, with the southern connection having to cross through ditches and the northern connection having to pass through a roundabout. These constraints of the site would make the connection into the existing foul sewer unreasonable and alternative methods of foul drainage is to be considered. Both options will need to pass through a river regardless.

Additionally, this sewer only serves a handful of properties prior to being pumped elsewhere. This is likely to require upgrades to the system, and the disruption and cost this will cause should be a consideration as to why a connection here is not feasible.

The water will pass through wastewater treatment plants to ensure that the water quality reaches appropriate levels or treatment.

There will be seldom occasions where the site is cleaned – this is estimated to be once a month. During this process, more waste water will be generated and due to the presence of cleaning chemicals this water will not be suitable for recycling, re-use or distribution through the waste water treatment plants. On these days, the wastewater will be collected, and taken offsite for disposal – this ensures that the daily volume of water leaving the site is note exceeded and that the discharge is suitable to be cleaned to sufficient levels and discharge into the watercourse.

Another considered to be presented to the EA is the general location of this development. The waste water discharge flow would flow away from any residential areas before eventually being pumped out by the IDB. This will limit the impact of any nuisance smells.

Conclusion

- The above drainage strategy demonstrates that the site can be drained through the use of a Sustainable Drainage System at an appropriate level for the development, and although the final method has not been decided, viable options have been provided.
- The flow offsite will be restricted to a maximum of 4.8 l/s.
- Calculations have been included to assess a surcharged outfall.
- Maximum water depth in the basin is less than 0.5m.
- No flooding is currently anticipated for the 1 in 100 year + 40% climate change event.
- Existing greenfield offsite flow from the undeveloped site is reduced for all storms above the Q_{BAR} event the discharge is in fact reduced to the pumpable catchment rate which is lower than the Q_{BAR} event.
- The proposed scheme does not increase the risk of flooding either on or off site as a result of the development.
- A full maintenance strategy will be developed at the detailed design stage.
- The total foul discharge from the site is slightly more than 13m³ per day.
- This is more than the EA allows in the general binding rules and an EA permit will be required.
- The length of connection to the foul sewer exceeds the EA's 'reasonable' length formula, and for the viability of the project can be ruled out.
- A preliminary drainage layout can be found on JCE's Preliminary Drainage Strategy drawing: 0371-JCE-00-SI-DR-C-3000.

Appendices

Appendix A – Proposed Drainage Calculations

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	1	Maximum Rainfall (mm/hr)	1.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
PS4	0.890	5.00	2.800	1500	526401.429	322395.919	1.800
S Pump			2.800	1500	526432.776	322441.668	1.892
PS5		5.00	2.800	1200	526450.623	322441.467	0.700
HW3			2.800	1200	526455.420	322442.057	0.738
HW2	0.792	5.00	2.800		526436.015	322493.000	0.750
SW5			2.800		526468.634	322489.365	0.751
HW4	0.840	5.00	2.800	1200	526480.772	322530.435	0.750
PS6			2.800	1200	526487.242	322531.406	0.794
HW5			2.800	1200	526494.885	322532.556	0.846
PS1		5.00	3.250	1350	526298.585	322513.581	0.800
PS2			3.250	1350	526435.172	322513.581	1.104
HW1			2.800		526444.834	322579.216	0.728
SW1		5.00	3.000		526286.532	322527.317	0.500
SW2			3.000		526295.272	322590.632	0.501
SW3			3.000		526439.848	322595.560	0.502
SW4			2.800		526469.493	322533.611	0.738

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
3.000	PS4	S Pump	55.458	0.600	1.000	0.908	0.092	600.0	600	5.94	1.0
2.002	HW2	SW5	32.821	0.035	2.050	2.049	0.001	32820.9	4000	14.32	1.0
2.000	PS1	PS2	136.587	0.600	2.450	2.146	0.304	450.0	450	7.39	1.0
2.001	PS2	HW2	20.598	0.600	2.146	2.100	0.046	450.0	450	7.75	1.0
4.000	HW4	PS6	6.542	0.600	2.050	2.006	0.044	150.0	150	5.13	1.0
4.001	PS6	HW5	7.729	0.600	2.006	1.954	0.052	150.0	150	5.29	1.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
3.000	0.987	279.0	2.4	1.200	1.292	0.890	0.0	39	0.309
2.002	0.083	229.1	3.1	0.250	0.251	1.160	0.0	42	0.018
2.000	0.952	151.4	1.0	0.350	0.654	0.368	0.0	26	0.272
2.001	0.952	151.4	1.0	0.654	0.250	0.368	0.0	26	0.272
4.000	0.818	14.5	2.3	0.600	0.644	0.840	0.0	40	0.597
4.001	0.818	14.5	2.3	0.644	0.696	0.840	0.0	40	0.597

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

		DN EERS	Spale	ding, olnshire	on Street, e,		Netw Ben Ja		-3000.pfd m Netwo		Page 2	
						L	<u>inks</u>					
Name	US Node	DS Node		ngth m)	ks (mm) , n	/ US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)			Rain (mm/hr)
1.000	SW1	SW2		8.915	0.035			0.001	100000			1.0
1.003 5.000	HW1 PS5	SW4 HW3		845 833	0.035			0.005 0.008	10000 600			1.0 1.0
1.002	SW3	HW1		1.088	0.000			0.008	225			1.0
1.001	SW2	SW3		.660	0.035				100000			1.0
1.001	3002	3003	144	.000	0.035	2.499	2.490	0.001	100000	.0 170	0 30.00	1.0
	Na	me	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro	
			m/s)	(I/s)	(I/s)	Depth (m)	Depth (m)	(ha)	Inflow (I/s)	Depth (mm)	Velocity (m/s)	
	1.0	00 (0.043	68.9	0.1	0.000	0.001	0.048	0.0	14	0.005	
	1.0	03 (0.136	217.9	1.7	0.228	0.233	0.632	0.0	34	0.029	
	5.0	00 (0.307	2.4	0.0	0.600	0.608	0.000	0.0	0	0.000	
	1.0	02 ().213	3.8	1.7	0.352	0.228	0.632	0.0	71	0.209	

1.001 0.043 68.9	1.7 <mark>0.00</mark>	1 0.002	0.632	0.0	66	0.014

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
3.000	55.458	600.0	600	Circular	2.800	1.000	1.200	2.800	0.908	1.292
2.002	32.821	32820.9	4000	Swale	2.800	2.050	0.250	2.800	2.049	0.251
2.000	136.587	450.0	450	Circular	3.250	2.450	0.350	3.250	2.146	0.654
2.001	20.598	450.0	450	Circular	3.250	2.146	0.654	2.800	2.100	0.250
4.000	6.542	150.0	150	Circular	2.800	2.050	0.600	2.800	2.006	0.644
4.001	7.729	150.0	150	Circular	2.800	2.006	0.644	2.800	1.954	0.696
1.000	63.915	100000.0	1700	Swale	3.000	2.500	0.000	3.000	2.499	0.001
1.003	51.845	10000.0	1700	Swale	2.800	2.072	0.228	2.800	2.067	0.233
5.000	4.833	600.0	100	Circular	2.800	2.100	0.600	2.800	2.092	0.608
1.002	17.088	225.0	150	Circular	3.000	2.498	0.352	2.800	2.422	0.228
1.001	144.660	100000.0	1700	Swale	3.000	2.499	0.001	3.000	2.498	0.002

Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type
3.000	PS4	1500	Manhole	1 Adoptable	S Pump	1500	Manhole	1 Adoptable
2.002	HW2		Junction		SW5		Junction	
2.000	PS1	1350	Manhole	1 Adoptable	PS2	1350	Manhole	1 Adoptable
2.001	PS2	1350	Manhole	1 Adoptable	HW2		Junction	
4.000	HW4	1200	Manhole	1 Adoptable	PS6	1200	Manhole	1 Adoptable
4.001	PS6	1200	Manhole	1 Adoptable	HW5	1200	Manhole	1 Adoptable
1.000	SW1		Junction		SW2		Junction	
1.003	HW1		Junction		SW4		Junction	
5.000	PS5	1200	Manhole	1 Adoptable	HW3	1200	Manhole	1 Adoptable
1.002	SW3		Junction		HW1		Junction	
1.001	SW2		Junction		SW3		Junction	

	JCL,
JACKSON	Spale
	Linco
CONSULTING ENGINEERS	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectior	IS	Link	IL (m)	Dia (mm)
PS4	526401.429	322395.919	2.800	1.800	1500					
							0	3.000	1.000	600
S Pump	526432.776	322441.668	2.800	1.892	1500		0	3.000	0.908	600
						\mathcal{P}				
PS5	526450.623	322441.467	2.800	0.700	1200					
						()→0				
							0	5.000	2.100	100
HW3	526455.420	322442.057	2.800	0.738	1200		1	5.000	2.092	100
						1				
HW2	526436.015	322493.000	2.800	0.750		1	1	2.001	2.100	450
						>o				
							0	2.002	2.050	4000
SW5	526468.634	322489.365	2.800	0.751			1	2.002	2.049	4000
						10				
HW4	526480.772	322530.435	2.800	0.750	1200					
						(→>0				
							0	4.000	2.050	150
PS6	526487.242	322531.406	2.800	0.794	1200		1	4.000	2.006	150
						1				
							0	4.001	2.006	150
HW5	526494.885	322532.556	2.800	0.846	1200		1	4.001	1.954	150
						1				
PS1	526298.585	322513.581	3.250	0.800	1350					
						⊖→₀				
							0	2.000	2.450	450
PS2	526435.172	322513.581	3.250	1.104	1350		1	2.000	2.146	450
						1				
						0 0	0		2.146	450
HW1	526444.834	322579.216	2.800	0.728			1	1.002	2.422	150
						0	0	1.003	2.072	1700
SW1	526286.532	322527.317	3.000	0.500		Ĵ,				
							0	1.000	2.500	1700
						I	0	1 1.000	2.300	1700

	JCE, Red Lion Street,	File: 0371-CAL-3000.pfd	Page 4
JACKSON	Spalding,	Network: Storm Network	
NSULTING ENGINEERS	Lincolnshire,	Ben Jackson	
	PE11 1SX	20/05/2024	

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	IS	Link	IL (m)	Dia (mm)
SW2	526295.272	322590.632	3.000	0.501			1	1.000	2.499	1700
						} ∫ 1	0	1.001	2.499	1700
SW3	526439.848	322595.560	3.000	0.502			1	1.001	2.498	1700
						1	0	1.002	2.498	150
SW4	526469.493	322533.611	2.800	0.738		1	1	1.003	2.067	1700

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	х
M5-60 (mm)	20.000	Drain Down Time (mins)	240
Ratio-R	0.400	Additional Storage (m³/ha)	0.0
Summer CV	0.750	Check Discharge Rate(s)	х
Winter CV	0.840	Check Discharge Volume	х

Storm Durations 15 30 60 120 180 240 360 480 600 720 960 1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	
1	0	0	0	
30	0	0	0	
100	0	0	0	
100	40	0	0	

Node PS6 Online Hydro-Brake[®] Control

Flap Valve	\checkmark	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	2.006	Product Number	CTL-SHE-0109-4800-0600-4800
Design Depth (m)	0.600	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	4.8	Min Node Diameter (mm)	1200

Node S Pump Offline Pump Control

Flap Valve Loop to Node	Invert Level (m) Design Depth (m)		Design Flow (I/s) Switch on depth (m)	Switch off depth (m)	0.010	
		Dep (m				

(m) (l/s) 1.200 100.000

JACKSON CONSULTING ENGINEERS	JCE, Red Lion Street, Spalding, Lincolnshire, PE11 1SX	File: 0371-CAL-3000.pfd Network: Storm Network Ben Jackson 20/05/2024	Page 5
	Node HW4 Flow throug	h Pond Storage Structure	
Base Inf Coefficient (m/hr Side Inf Coefficient (m/hr Safety Factor) 0.00000 Invert	Level (m) 2.050 Main Cha	nnel Length (m) 120.000 Innel Slope (1:X) 10000.0 Main Channel n 0.035
		lets W5 SW4	
	Depth Area Inf Area (m) (m²) (m²) 0.000 7352.0 0.0	DepthAreaInf Area(m)(m²)(m²)0.7008377.00.0	
	Node S Pump Depth/	Area Storage Structure	
Base Inf Coefficier Side Inf Coefficier		actor 2.0 Inver rosity 0.95 Time to half em	t Level (m) 0.908 npty (mins) 39
(m)	Area Inf Area Depth Ar (m²) (m²) (m) (m) 250.0 0.0 1.200 250		(m²)

JCE, Red Lion Street,
Spalding,
Lincolnshire,
PE11 1SX

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	PS4	7	1.317	0.317	125.4	0.5594	0.0000	ОК
60 minute winter	S Pump	46	1.154	0.246	64.8	58.8258	0.0000	ОК
1440 minute winter	PS5	1350	2.121	0.021	0.0	0.0241	0.0000	ОК
1440 minute winter	HW3	1260	2.121	0.059	0.1	0.0668	0.0000	ОК
15 minute winter	HW2	14	2.294	0.244	151.7	0.0000	0.0000	ОК
15 minute winter	SW5	14	2.293	0.244	108.4	0.0000	0.0000	ОК
1440 minute winter	HW4	1320	2.121	0.071	10.6	0.0804	0.0000	OK
1440 minute winter	PS6	1320	2.117	0.111	4.2	0.1253	0.0000	ОК
15 minute summer	HW5	1	1.954	0.000	0.7	0.0000	0.0000	ОК
15 minute winter	PS1	12	2.479	0.029	2.3	0.0419	0.0000	OK
15 minute winter	2.000:50%	10	2.473	0.175	51.9	0.0000	0.0000	OK
15 minute winter	PS2	12	2.320	0.174	48.6	0.2494	0.0000	ОК
480 minute winter	HW1	352	2.124	0.052	4.8	0.0000	0.0000	OK
360 minute winter	SW1	256	2.657	0.157	0.8	0.0000	0.0000	OK
360 minute winter	1.000:50%	256	2.656	0.157	2.6	1.2264	0.0000	ОК
360 minute winter	SW2	256	2.657	0.158	4.2	0.0000	0.0000	ОК
360 minute winter	1.001:50%	256	2.656	0.158	12.6	1.2368	0.0000	OK
360 minute winter	SW3	256	2.656	0.158	5.4	0.0000	0.0000	SURCHARGED
1440 minute winter	SW4	1290	2.121	0.059	3.7	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	PS4	3.000	S Pump	125.1	1.861	0.448	4.3021	
60 minute winter	S Pump	Pump	HW3	20.5				93.4
1440 minute winter	PS5	5.000	HW3	0.0	0.020	0.013	0.0075	
60 minute winter	HW3	Flow through pond	HW4	22.5	0.015	0.003	221.7094	
15 minute winter	HW2	2.002	SW5	108.4	0.175	0.473	37.9551	
60 minute winter	SW5	Flow through pond	HW4	22.5	0.015	0.003	221.7094	
1440 minute winter	HW4	4.000	PS6	4.2	0.406	0.289	0.0725	
1440 minute winter	PS6	Hydro-Brake [®]	HW5	4.2				243.8
15 minute winter	PS1	2.000	2.000:50%	-2.3	-0.088	-0.015	2.0345	
15 minute winter	PS1	2.000	PS2	48.6	0.882	0.321	3.7998	
15 minute winter	PS2	2.001	HW2	46.1	0.891	0.304	1.2359	
360 minute winter	HW1	1.003	SW4	4.9	0.057	0.022	4.6167	
30 minute winter	SW1	1.000	1.000:50%	-8.5	-0.085	-0.123	7.5468	
30 minute winter	SW1	1.000	SW2	-16.1	-0.105	-0.234	7.5661	
15 minute winter	SW2	1.001	1.001:50%	-29.0	-0.167	-0.420	13.7383	
15 minute winter	SW2	1.001	SW3	30.0	0.160	0.436	16.6932	
360 minute winter	SW3	1.002	HW1	4.9	0.351	1.301	0.2113	
60 minute winter	SW4	Flow through pond	HW4	22.5	0.015	0.003	221.7094	

JCE, Red Lion Street,
Spalding,
Lincolnshire,
PE11 1SX

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	PS4	46	1.480	0.480	157.0	0.8482	0.0000	ОК
60 minute winter	S Pump	46	1.480	0.572	153.8	136.7635	0.0000	ОК
1440 minute winter	PS5	1440	2.204	0.104	0.0	0.1172	0.0000	SURCHARGED
1440 minute winter	HW3	1440	2.204	0.142	0.1	0.1604	0.0000	ОК
15 minute winter	HW2	13	2.515	0.465	363.1	0.0000	0.0000	ОК
15 minute winter	SW5	13	2.511	0.462	269.3	0.0000	0.0000	ОК
1440 minute winter	HW4	1440	2.204	0.154	20.7	0.1737	0.0000	SURCHARGED
1440 minute winter	PS6	1440	2.197	0.191	4.8	0.2157	0.0000	SURCHARGED
15 minute summer	HW5	1	1.954	0.000	2.9	0.0000	0.0000	ОК
15 minute winter	PS1	11	2.609	0.159	14.1	0.2269	0.0000	ОК
15 minute winter	2.000:50%	11	2.593	0.295	127.2	0.0000	0.0000	ОК
15 minute winter	PS2	13	2.528	0.382	115.3	0.5468	0.0000	ОК
1440 minute winter	HW1	1410	2.204	0.132	6.3	0.0000	0.0000	ОК
240 minute winter	SW1	212	2.801	0.301	2.6	0.0000	0.0000	ОК
240 minute winter	1.000:50%	212	2.800	0.301	8.7	4.5276	0.0000	ОК
240 minute winter	SW2	212	2.801	0.302	13.8	0.0000	0.0000	ОК
240 minute winter	1.001:50%	212	2.800	0.302	37.7	4.5398	0.0000	ОК
240 minute winter	SW3	212	2.801	0.303	11.7	0.0000	0.0000	FLOOD RISK
1440 minute winter	SW4	1410	2.204	0.142	6.1	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	PS4	3.000	S Pump	301.9	2.088	1.082	11.4376	
60 minute winter	S Pump	Pump	HW3	47.6				228.0
600 minute summer	PS5	5.000	HW3	-0.1	-0.038	-0.030	0.0293	
30 minute winter	HW3	Flow through pond	HW4	63.6	0.023	0.009	426.8625	
15 minute winter	HW2	2.002	SW5	269.3	0.208	1.175	81.9532	
30 minute winter	SW5	Flow through pond	HW4	63.6	0.023	0.009	426.8625	
1440 minute winter	HW4	4.000	PS6	4.8	0.406	0.332	0.1152	
1440 minute winter	PS6	Hydro-Brake [®]	HW5	4.8				325.7
15 minute summer	PS1	2.000	2.000:50%	-14.5	-0.291	-0.096	5.1897	
15 minute winter	PS1	2.000	PS2	115.3	1.020	0.762	8.5061	
15 minute winter	PS2	2.001	HW2	106.3	0.942	0.702	3.0515	
180 minute winter	HW1	1.003	SW4	7.1	0.061	0.033	8.7878	
			-					
15 minute winter	SW1	1.000	1.000:50%	-26.7	-0.146	-0.387	14.5909	
15 minute winter	SW1	1.000	SW2	-54.0	-0.185	-0.783	14.5417	
15 minute winter	SW2	1.001	1.001:50%	-86.9	-0.254	-1.262	32.2635	
15 minute winter	SW2	1.001	SW3	82.8	0.236	1.202	34.9804	
240 minute winter	SW3	1.002	HW1	7.2	0.473	1.917	0.2295	
30 minute winter	SW4	Flow through pond	HW4	63.6	0.023	0.009	426.8625	

JCE, Red Lion Street,
Spalding,
Lincolnshire,
PE11 1SX

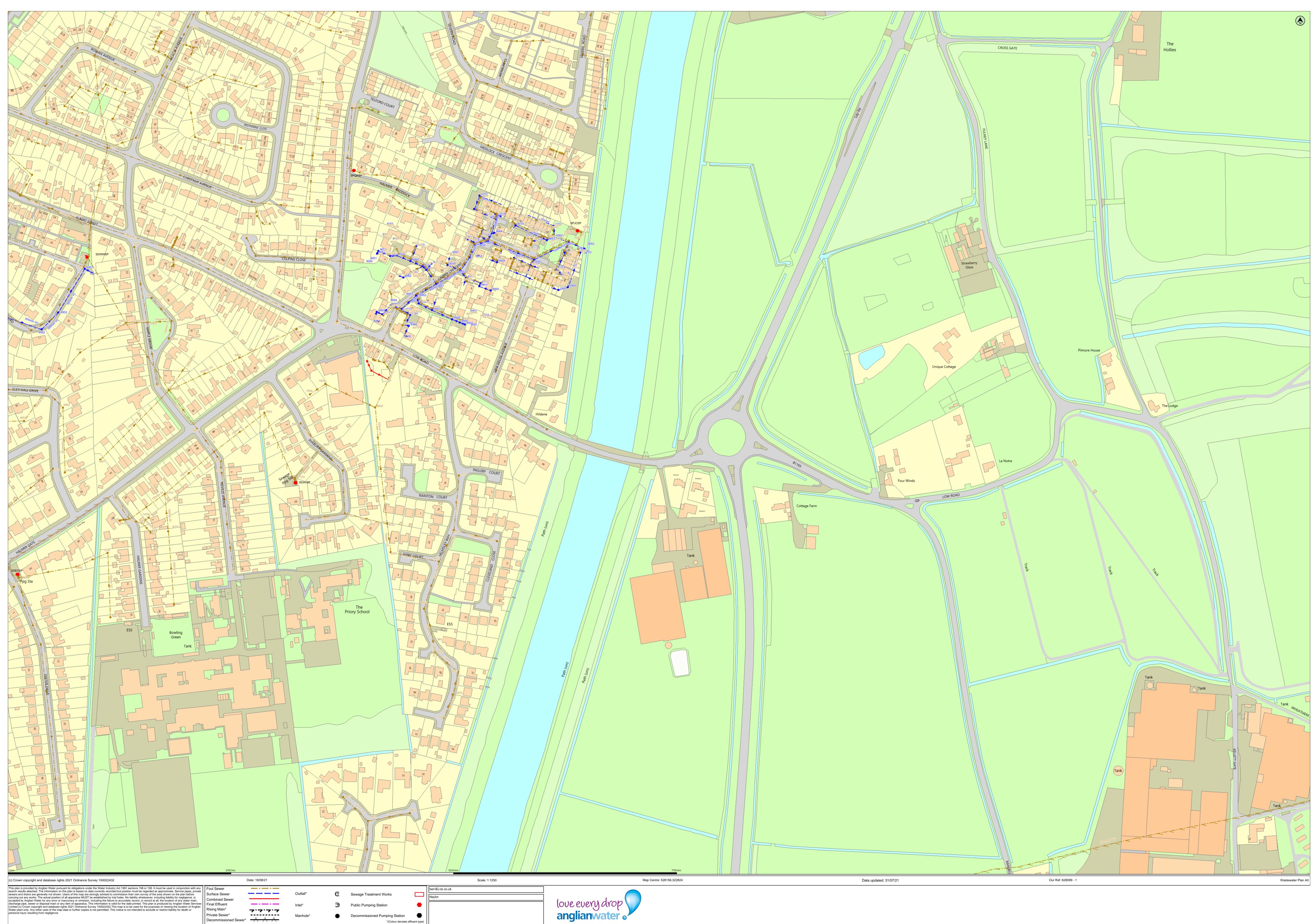
Page 8

Results for 100	year Critical Storm Duration.	Lowest mass balance: 98.35%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	PS4	45	1.674	0.674	206.4	1.1908	0.0000	SURCHARGED
60 minute winter	S Pump	46	1.670	0.762	199.0	182.4006	0.0000	ОК
1440 minute winter	PS5	1470	2.248	0.148	0.0	0.1673	0.0000	SURCHARGED
1440 minute winter	HW3	1470	2.248	0.186	0.1	0.2103	0.0000	ОК
15 minute winter	HW2	13	2.608	0.558	468.4	0.0000	0.0000	FLOOD RISK
15 minute winter	SW5	13	2.605	0.556	358.9	0.0000	0.0000	ОК
1440 minute winter	HW4	1470	2.248	0.198	25.2	0.2238	0.0000	SURCHARGED
1440 minute winter	PS6	1470	2.241	0.235	4.8	0.2657	0.0000	SURCHARGED
15 minute summer	HW5	1	1.954	0.000	3.6	0.0000	0.0000	ОК
15 minute winter	PS1	13	2.693	0.243	19.2	0.3479	0.0000	ОК
15 minute winter	2.000:50%	12	2.686	0.388	165.1	0.0000	0.0000	ОК
15 minute winter	PS2	13	2.633	0.487	140.9	0.6974	0.0000	SURCHARGED
1440 minute winter	HW1	1440	2.248	0.176	7.1	0.0000	0.0000	ОК
240 minute winter	SW1	228	2.872	0.372	3.4	0.0000	0.0000	OK
240 minute winter	1.000:50%	228	2.872	0.372	11.6	6.9308	0.0000	OK
240 minute winter	SW2	228	2.872	0.373	18.5	0.0000	0.0000	OK
240 minute winter	1.001:50%	228	2.872	0.373	49.1	6.9399	0.0000	OK
240 minute winter	SW3	228	2.872	0.374	14.2	0.0000	0.0000	FLOOD RISK
1440 minute winter	SW4	1470	2.248	0.186	6.9	0.0000	0.0000	ОК

Link Event US Link DS Outflow Velocity Flow/Ca (Outflow) Node Node (l/s) (m/s)	o Link Vol (m³)	Discharge Vol (m ³)
15 minute winter PS4 3.000 S Pump 389.0 2.307 1.39	14.7952	
60 minute winter S Pump Pump HW3 63.5		300.5
60 minute winter PS5 5.000 HW3 -0.1 -0.121 -0.05	L 0.0211	
30 minute winter HW3 Flow through pond HW4 93.2 0.026 0.01	3 558.1957	
15 minute winter HW2 2.002 SW5 358.9 0.212 1.56	7 103.6463	
30 minute winter SW5 Flow through pond HW4 93.2 0.026 0.01	3 558.1957	
960 minute winter HW4 4.000 PS6 4.8 0.407 0.33	0.1152	
960 minute summer PS6 Hydro-Brake [®] HW5 4.8		237.7
15 minute summer PS1 2.000 2.000:50% -22.5 -0.324 -0.14	6.9542	
15 minute winter PS1 2.000 PS2 140.9 1.057 0.93	l 10.3684	
15 minute winter PS2 2.001 HW2 130.5 0.935 0.86	3.2636	
240 minute winter HW1 1.003 SW4 8.1 0.060 0.03	7 13.1326	
15 minute winter SW1 1.000 1.000:50% -35.2 -0.160 -0.51	l 18.8112	
15 minute winter SW1 1.000 SW2 -74.5 -0.207 -1.08	l 18.7516	
15 minute winter SW2 1.001 1.001:50% -125.0 -0.280 -1.81	5 41.8719	
15 minute summer SW2 1.001 SW3 102.4 0.258 1.48	39.9904	
240 minute winter SW3 1.002 HW1 8.2 0.523 2.16	0.2360	
30 minute winter SW4 Flow through pond HW4 93.2 0.026 0.01	3 558.1957	

Page 9

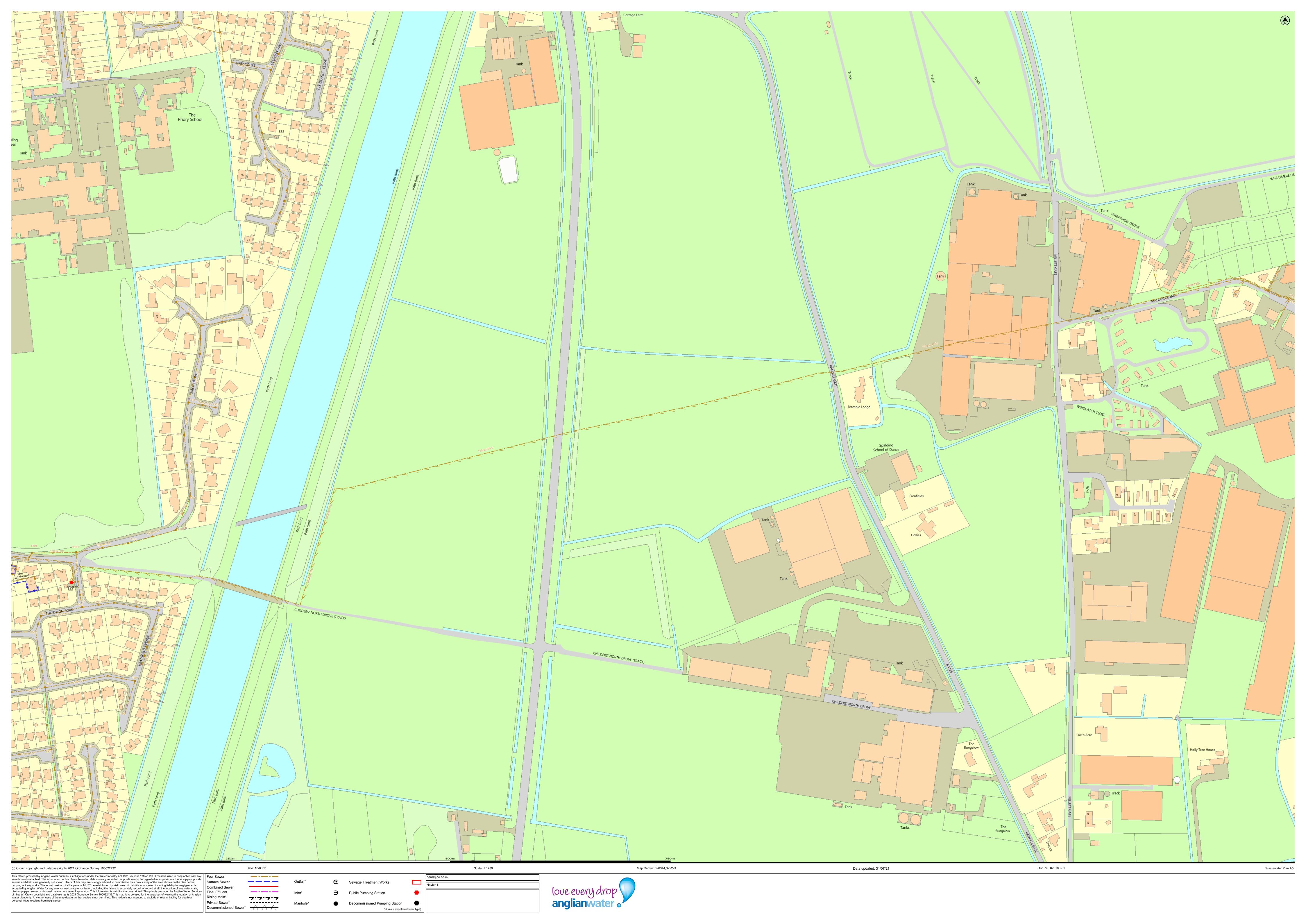

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.35%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	PS4	45	2.004	1.004	288.9	1.7740	0.0000	SURCHARGED
60 minute winter	S Pump	46	1.994	1.086	287.7	259.8574	0.0000	ОК
1440 minute winter	PS5	1680	2.372	0.272	0.1	0.3080	0.0000	SURCHARGED
1440 minute winter	HW3	1680	2.372	0.310	0.1	0.3505	0.0000	ОК
15 minute winter	HW2	14	2.796	0.746	692.8	0.0000	0.0000	FLOOD RISK
15 minute winter	SW5	14	2.796	0.747	543.2	0.0000	0.0000	ОК
1440 minute winter	HW4	1680	2.372	0.322	31.0	0.3643	0.0000	SURCHARGED
1440 minute winter	PS6	1680	2.372	0.366	0.0	0.4143	0.0000	SURCHARGED
15 minute summer	HW5	1	2.454	0.500	0.0	0.0000	0.0000	ОК
15 minute summer	PS1	11	3.184	0.734	33.8	1.0508	0.0000	FLOOD RISK
15 minute summer	2.000:50%	11	3.168	0.870	219.7	0.0000	0.0000	SURCHARGED
15 minute winter	PS2	12	2.841	0.695	224.5	0.9941	0.0000	SURCHARGED
1440 minute winter	HW1	1680	2.372	0.300	8.5	0.0000	0.0000	ОК
240 minute winter	SW1	232	2.982	0.482	4.8	0.0000	0.0000	ОК
240 minute winter	1.000:50%	232	2.982	0.482	16.8	11.6232	0.0000	ОК
240 minute winter	SW2	232	2.982	0.483	26.6	0.0000	0.0000	ОК
240 minute winter	1.001:50%	232	2.982	0.483	68.8	11.6245	0.0000	ОК
240 minute winter	SW3	232	2.982	0.484	18.4	0.0000	0.0000	FLOOD RISK
1440 minute winter	SW4	1680	2.372	0.310	8.2	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	PS4	3.000	S Pump	553.9	2.252	1.985	15.6213	
60 minute winter	S Pump	Pump	HW3	90.5				421.5
30 minute winter	PS5	5.000	HW3	-0.3	-0.170	-0.110	0.0301	
15 minute winter	HW3	Flow through pond	HW4	147.5	0.037	0.021	658.0176	
15 minute winter	HW2	2.002	SW5	543.2	0.234	2.371	152.8583	
15 minute winter	SW5	Flow through pond	HW4	147.5	0.037	0.021	658.0176	
15 minute summer	HW4	4.000	PS6	1.3	0.328	0.088	0.0871	
15 minute summer	PS6	Hydro-Brake®	HW5	0.0				0.0
15 minute winter	PS1	2.000	2.000:50%	-56.9	-0.359	-0.376	10.8207	
15 minute winter	PS1	2.000	PS2	224.5	1.417	1.483	10.8207	
15 minute winter	PS2	2.001	HW2	224.9	1.420	1.486	3.2636	
240 minute winter	HW1	1.003	SW4	9.3	0.060	0.043	22.0644	
15 minute winter	SW1	1.000	1.000:50%	-46.6	-0.175	-0.677	25.9068	
15 minute winter	SW1	1.000	SW2	-105.4	-0.233	-1.529	25.8433	
15 minute winter	SW2	1.001	1.001:50%	-190.2	-0.319	-2.760	58.1740	
15 minute winter	SW2	1.001	SW3	139.6	0.282	2.026	59.2132	
							0.2444	
240 minute winter	SW3	1.002	HW1	9.5	0.593	2.507	0.2444	
15 minute winter	SW4	Flow through pond	HW4	147.5	0.037	0.021	658.0176	

Appendix B – Anglian Water Asset Maps

ewage mealment works
ublic Pumping Station
ecommissioned Pumping


Manhole Refer	526015	Northing 323032	Liquid T F	-	vel Invert Leve	Depth to Invert -
0002	526054 526063	323051 323047	F	-	-	-
0003	526063	323047 323060	F F	-	-	-
0005 0006	526037 526012	323058 323053	F	-	-	-
0007	526066	323038	F	-	-	-
0011 0012	526049 526052	323040 323038	F F	-	-	-
0015	526003	323050	F	-	-	-
0016 0017	526005 526014	323054 323051	F F	-	-	-
0018	526027	323011	F	-	-	-
0019 0020	526012 526029	323046 323016	F F	-	-	-
0021	526025	323005	F	-	-	-
0022 0023	526036 526016	323001 323009	F F	-	-	-
0024	526010	323023	F	-	-	-
0027 0028	526035 526041	323014 323010	F F	-	-	-
0029	526044	323013	F	-	-	-
0030 0034	526039 526036	323018 323067	F F	-	-	-
0040 0101	526030 526095	323054 323199	F F	-	-	-
0102	526046	323199	F	-	-	-
0103 0104	526051 526036	323129 323136	F F	2.76 2.84	2.16	0.6
0105	526010	323140	F	2.89	1.92	0.97
0106 0107	526006 526022	323125 323110	F F	2.85 2.81	1.96 2.12	0.89
0108	526056	323123	F	-	-	-
0109 0110	526056 526055	323118 323114	F F	-	-	-
0111	526055	323108	F	-	-	-
0112 0113	526055 526041	323101 323151	F F	-	-	-
0114	526047	323149	F	-	-	-
0115 0201	526035 526002	323153 323275	F F	-	-	-
0202	526026	323276	F	-	-	-
0203 0204	526070 526098	323260 323254	F F	-	-	-
049B	525973	323029	F	-	-	-
0801 0901	526030 526008	322839 322999	F F	-	-	-
4002	525475	323087	F	3.4	0.63	2.77
4101 4102	525439 525452	323102 323125	F F	3.45 3.45	0.79 1.07	2.66 2.38
4103	525468	323182	F	3.24	1.17	2.07
4104 4105	525467 525452	323158 323163	F F	-	-	-
4106 4205	525447 525467	323166 323225	F	- 3.255	- 1.775	- 1.48
4206	525489	323202	F F	-	-	-
4401 4402	525483 525474	322400 322495	F	2.76 2.65	1.89 1.08	0.87 1.57
4501	525462	322598	F	2.824	1.234	1.59
4602 4603	525444 525432	322642 322663	F F	2.962	0.952	2.01
4604	525437	322673	F	-	-	-
4702 4703	525476 525489	322795 322791	F F	3.62 3.653	2.99 2.513	0.63
4801	525443	322849	F	-	-	-
4802 4803	525487 525468	322864 322883	F F	3.609 3.609	2.119	1.49 2.56
4901	525451	322951	F	3.54	1.29	2.25
4902 4903	525474 525493	322963 322996	F F	3.39 3.26	0.99	2.4 2.46
5001	525510	323022	F	3.39	0.28	3.11
5002 5004	525515 525567	323032 323044	F F	-	-	-
5005	525599	323045	F	3.5	1.28	2.22
5006 5100	525518 525543	323071 323188	F F	3.488 3.274	0.368	3.12
5101 5102	525569 525537	323167 323155	F F	2.881 3	0.811	2.07 2.24
5102 5103	525537	323155	F	3.342	-	-
5200 5201	525503	323267	F F	3.032 3.223	1.952	1.08
5201 5202	525506 525535	323223 323227	F	3.223	1.663 1.777	1.56 1.51
5203 5204	525557 525526	323217 323215	F F	- 3.271	- 0.991	- 2.28
5205	525568	323241	F	2.86	1.69	1.17
5206 5207	525522 525588	323259 323266	F F	2.976	1.186	1.79
5208	525591	323275	F	-	-	-
5209 5210	525594 525596	323281 323285	F F	-	-	-
5601	525540	322629	F	-	-	-
5602 5701	525502 525537	322685 322701	F	- 3.33	- 2.18	- 1.15
5702	525561	322738	F	3.182	1.632	1.55
5703 5704	525576 525583	322734 322740	F F	-	-	-
5705	525550	322737	F	-	-	-
5706 5707	525555 525585	322738 322724	F F	-	-	-
5801	525529	322805	F	3.678	2.926	0.752
5802 5901	525592 525506	322890 322926	F F	3.384 4.159	1.944 0.919	1.44 3.24
5902	525557	322959	F	3.547	0.497	3.05
5903 5904	525581 525586	322960 322987	F F	3.245 3.334	1.255 1.944	1.99 1.39
6002	525693	323054	F	3.28	2.57 1.392	0.71
6003 6006	525699 525611	323095 323030	F	3.047	-	1.655 -
6007 6008	525611 525610	323024 323022	F	-	-	-
6100	525635	323167	F	-	-	-
6101 6200	525687 525656	323155 323238	F F	3.163 3.245	1.863 1.495	1.3 1.75
6201	525626	323223	F	3.109	1.279	1.83
6202 6203	525598 525627	323236 323291	F F	3.006 3.045	1.126 1.335	1.88 1.71
6204	525602	323259	F	-	-	-
6205 6206	525625 525633	323271 323268	F F	-	-	-
6207	525633	323265	F	-	-	-
6601 6602	525611 525678	322643 322682	F F	- 3.047	- 2.107	- 0.94
6701	525605	322725	F	3.23	2.06	1.17
6702 6703	525671 525601	322733 322767	F F	3.018 3.3	1.858 1.97	1.16 1.33
6704	525665	322791	F	3.082	1.632	1.45
6801 6802	525656 525606	322814 322883	F F	3.139 3.431	1.579 0.921	1.56 2.51
6803	525637	322840	F	-	-	-
6804 6901	525664 525685	322804 322920	F F	3.073 3.355	1.723 1.715	1.35 1.64
6902	525605	322941	F	3.382	1.852	1.53
6903 7001	525609 525768	322961 323008	F F	3.461 3.44	1.601 2.58	1.86 0.86
7002	525798	323028	F	3.35	1.94	1.41
7003 7004	525770 525703	323031 323034	F F	- 3.24	- 2.49	- 0.75
7005	525771	323052	F	3.34	2.52	0.82
6 . N NC	525763 525705	323088 323079	F F	3.413	1.603 -	1.81 -
	525719	323070	F	-	-	-
7007 7008	525767	323147 323229	F F	3.214	1.764 -	1.45 -
7007 7008 7100	525779	525225		0.001	4 70 4	1 5
7006 7007 7008 7100 7200 7201 7202	525779 525704	323224	F	3.234	1.734	1.5
7007 7008 7100 7200	525779		F F F	3.234 3.144 3.01	1.734 1.944 1.93	1.5 1.2 1.08
7007 7008 7100 7200 7201 7202 7701 7703	525779 525704 525775 525759 525747	323224 323289 322738 322785	F F F	3.144 3.01 2.92	1.944 1.93 -0.3	1.2 1.08 3.22
7007 7008 7100 7200 7201 7202 7701	525779 525704 525775 525759	323224 323289 322738	F F	3.144 3.01	1.944 1.93	1.2 1.08

Manhole Referen	ce Easting	Northing	Liquid Type Cover Lev	el Invert Level	Depth to Invert	Manhole Refere	nce Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert		Manhole Reference	e Fa
7804 7805	525764 525781	322879 322890	F - F -	- -	0.991 1.48	9058 9059	525975 525918	323080 323024	S S	- -	- -	- -			
7805 7901 7902	525781 525749 525767	322890 322952 322960	F - F 3.587 F 3.534	- 2.857 2.184	1.48 0.73 1.35	9059 9060 9061	525918 525955 525939	323024 323004 323009	S S S	-	-	-			
7903 8001	525794 525802	322960 323073	F -	-	-	9062 9063	525948 525956	323087 323056	S S	-	-	-			-
8002 8003	525870 525885	323088 323083	F	-	-	9064 9065	525971 525993	323060 323032	S S	-	-	-			
8009 8013	525864 525853	323036 323036	F	-	-	9066 9067	525900 525939	323025 323054	S S	-	-	-			+
8014 8015	525897 525891	323018 323024	F -	-	-	9068 9069	525945 525974	323051 323027	S S	-	-	-			
8016 8021 8024	525877 525882 525876	323016 323045 323031	F	- -		9070 9150 9950	525995 525954 525967	323068 323102 322995	S S S	-	- -	- -			
8101 8102	525806 525894	323031 323144 323170	F	- - 1.84	- 1.33	9951 9954	525954 525938	323000 322957	S S	-	-	-			
8103 8104	525841 525878	323195 323115	F -	-	-	9956 9957	525932 525901	322959 322973	S S	-	-	-	•		
8105 8106	525866 525851	323118 323124	F	-	-	9958	525923	322963	S	-	-	-			-
8107 8108	525825 525857	323126 323100	F -	-	-										
8201 8202	525811 525799	323200 323285	F	-	-										
8203 8303 8312	525826 525828 525817	323201 322368 323308	F - F 2.5 F -	- 1.223	- 1.277										
8401 8402	525829 525876	322400 322409	F 2.5 F 2.432	1.39 1.68	- 1.11 0.752										
8403 8601	525801 525892	322427 322638	F 2.5 F 3.08	1.612 1.31	0.888								•		-
8701 8702	525855 525851	322702 322734	F 2.78 F 2.94	0.84 0.63	1.94 2.31								•		
8703 8704	525803 525801	322745 322793	F 2.9 F 2.81	0.21 -	2.69 2.81										
8801 8802 8901	525843 525837 525867	322795 322864 322929	F 2.998 F 2.942 F 2.992	0.728 1.002 1.442	2.27 1.94 1.55										
8902 8903	525862 525884	322929 322975 322992	F 2.992 F - F -	-	-										
8904 8911	525846 525873	322932 322938 322968	F 2.893 F -	- 1.672 -	- 1.221 -										+
8912 8913	525867 525868	322972 322956	F	-	-										
8916 8918	525888 525855	322982 322991	F	-	-										
8919 8920 9000	525856 525846 525907	322977 322967 323004	F - F - F -	- -	-										+
9000 9001 9002	525907 525942 525948	323004 323033 323048	F		-										
9002 9003 9004	525972 525963	323048 323077 323052	F - F - F -	-	-										+
9005 9007	525933 525917	323020 323026	F	-	-										
9008 9009	525955 525986	323100 323087	F	-	-										
9017 9019 9020	525939 525984 525967	323005 323084 323084	F - F - F -		-										-
9020 9021 9022	525967 525974 525950	323084 323081 323087	F - F - F -	-	-										+
9023 9025	525941 525957	323007 323010 323004	F -	-											
9028 9029	525953 525955	323055 323059	F	-	-										
9030 9031	525953 525991	323066 323025	F -	-	-										_
9032 9036 9039	525993 525989 525994	323030 323020 323071	F	-	-										_
9039 9045 9046	525994 525969 525972	323071 323032 323042	F -	-	-										
9047 9048	525978 525943	323040 323051	F -	-	-								•		-
9101 9102	525921 525991	323159 323147	F 3.17 F 2.96	1.64 1.8	1.53 1.16										-
9103 9104	525964 525995	323158 323159	F 3.04 F 3.23	1.65 2.03	1.39 1.2										
9105 9106 9107	525932 525901 525904	323174 323182 323107	F 3.195 F 3.12 F -	1.475 1.65	1.72 1.47										_
9201 9202	525940 525974	323206 323224	F 3.15 F -	- 1.37 -	- 1.78 -										
9203 9204	525951 525989	323231 323275	F -	-	-										
9205 9501	525925 525914	323281 322516	F - F 2.932	- 2.082	- 0.85										
9502 9503 9504	525924 525930 525904	322542 322567 322589	F 2.964 F 2.994 F 2.925	1.944 1.824 1.665	1.02 1.17 1.26										
9601 9602	525904 525902 525909	322602 322691	F 2.925 F 2.791 F -	1.531	1.26										
9701 9702	525974 525925	322714 322726	F 2.775 F 2.607	1.515 1.267	1.26 1.34								•		+
9703 9801	525931 525962	322788 322879	F 2.754 F 3.098	1.614 1.958	1.14 1.14								- -		
9901 9902 9904	525918 525983 525901	322901 322932 322975	F 3.033 F 3.037 F -	1.783 2.197	1.25 0.84										-
9904 9910 9914	525901 525935 525922	322975 322962 322967	F - F - F -												+
9919 9920	525925 525924	322907 322913 322909	F - F - F -	-	-										+
9921 0051	525915 526016	322911 323030	F - S -	-	-										
0052 0053 0054	526072 526054 526067	323042 323049 323038	S - S -	-	-										
0054 0055 0057	526067 526016 526041	323038 323051 323019	S - S - S -		-										
0059 0059	526041 526046 526050	323019 323013 323038	S - S - S -	-	-										-
0060 0061	526012 526038	323024 323068	S - S -	-	-										
0062 0063	526038 526030	323055 323052	S - S -	-	-										
0950 0951 4952	526053 526043 525463	322999 322996 322952	S - S - S -		-										-
4952 4953 5051	525463 525481 525511	322952 322971 323020	S - S - S -	-											
8052 8053	525839 525841	323020 323037 323040	S - S -	-											
8054 8055	525854 525862	323034 323035	S - S -	-	-										F
8059 8060	525890 525894	323023 323019	S - S -	-	-										
8061 8062 8063	525877 525869 525883	323015 323010 323045	S - S - S -		-										-
8063 8064 8951	525883 525877 525867	323045 323028 322975	S - S - S -	-											
8951 8952 8955	525883 525839	322975 322990 322971	S - S - S -	-	-										+
8956 8957	525845 525854	322969 322979	S - S -	-	-										
8960 8961	525875 525871	322955 322957	S - S -	-	-										
8962 8963	525876 525869	322968 322973	S - S -	-	-										
8964 9051 9052	525886 525906 525933	322981 323003 323018	S - S - S -	-											-
9052 9053 9054	525933 525943 525949	323018 323032 323046	S - S - S -	-											+
9055 9056	525964 525973	323040 323051 323075	S - S - S -	-	-										+
9057	525922	323037	S -	-	-										

anhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
													r Ref: 628099 - 1

Our Ref: 628099 - 1

9 90%-0 3.5% 3.5% 3.7% 9 20% 7 2.5% 3.7% 3 1 5000 327.0% 7 2.5% 3.7% 3.7% 1 5000 327.0% 7 2.5% 3.7% 3.7% 3.7% 1 5000 327.0% 7 2.5% 3.7% 3.7% 3.7% 1 5000 327.0% 7 2.5% 3.7% 3.7% 3.7% 1 5000 327.0% 7 2.5% 3.5% 3.5% 1 5000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5% 1 2000 327.0% 7 2.5% 3.5% 3.5%
B3 525694 322080 F 2.77 -0.63 3.4 11 525687 322142 F 3.3 -0.57 3.87 12 525687 322141 F 3.3 -0.779 3.69 13 525637 322141 F 3.37 0.904 2.466 12 525678 322682 F 3.018 1.858 1.16 14 5256671 321833 F 2.782 0.322 2.46 12 525671 321839 F 2.611 0.466 2.055 14 525652 321948 F 2.851 -0.029 2.88 12 525654 321946 F 2.803 0.253 2.56 13 525659 321918 F 2.507 1.377 1.13 14 525762 322035 F 2.507 1.377 1.13 14 525764 322153 F 2.507 1
P2 525689 322109 F 2.911 -0.779 3.69 33 525637 322141 F 3.5 0.847 2.653 44 525632 322134 F 3.37 0.904 2.466 525671 322733 F 3.018 1.858 1.16 11 5256661 321873 F 2.782 0.322 2.461 5226571 321844 F 2.655 0.9 1.755 14 525652 321989 F 2.815 0.029 2.88 12 525664 321946 F 2.806 1.226 1.28 13 525762 322015 F 2.525 1.395 1.13 14 525730 322085 F 2.398 0.828 1.57 14 525730 322085 F 2.398 0.828 1.57 15 525730 322085 F 2.398 0.828 1.57
B3 52637 322141 F 3.5 0.847 2.653 144 526632 322134 F 3.37 0.904 2.466 12 526678 322682 F 3.047 2.107 0.94 12 525671 322733 F 3.047 2.107 0.94 12 525661 321839 F 2.511 0.456 2.055 14 526627 321844 F 2.655 0.9 1.755 14 526654 321948 F 2.861 -0.029 2.88 12 526564 321948 F 2.803 0.253 2.55 133 525762 32205 F 2.507 1.377 1.13 14 525730 322085 F 2.388 0.828 1.57 14 525746 322738 F 2.301 1.93 1.08 14 525750 322085 F 2.566
92 525678 322682 F 3.047 2.107 0.94 92 525671 322733 F 3.018 1.858 1.16 91 5256671 321839 F 2.782 0.322 2.46 92 525671 321839 F 2.655 0.9 1.755 94 525627 321844 F 2.655 0.9 1.755 94 525654 321946 F 2.861 -0.029 2.88 92 525654 321948 F 2.803 0.253 2.55 93 525676 322015 F 2.506 1.226 1.28 92 525762 322035 F 2.453 1.078 1.375 93 525763 322085 F 2.463 1.078 1.375 94 525740 322183 F 2.50 0.237 2.737 91 525707 321837 F 2.766 <
12 525671 322733 F 3.018 1.858 1.16 11 525666 321873 F 2.782 0.322 2.46 12 525671 321839 F 2.615 0.922 2.46 12 525652 321844 F 2.655 0.9 1.755 14 525652 321989 F 2.851 0.029 2.88 12 525654 321946 F 2.506 1.26 1.28 13 525657 322002 F 2.506 1.395 1.13 14 525761 322020 F 2.507 1.377 1.13 13 525762 322035 F 2.398 0.628 1.57 14 525730 322085 F 2.398 0.828 1.57 14 525707 321857 F 2.726 0.906 1.82 15 525702 321959 F 2.750 1
12 525671 321839 F 2.511 0.456 2.055 144 525627 321844 F 2.655 0.9 1.755 11 525654 321989 F 2.851 -0.029 2.861 12 525659 321918 F 2.803 0.253 2.55 11 525723 322002 F 2.506 1.226 1.28 12 525762 322015 F 2.453 1.078 1.375 13 525768 322076 F 2.453 1.078 1.375 14 525714 322076 F 2.453 1.078 1.375 15 525730 322085 F 2.398 0.828 1.57 14 525769 322738 F 2.453 0.706 1.82 15 525707 321857 F 2.636 0.706 1.93 14 525742 321996 F 2.636
P4 525627 321844 F 2.655 0.9 1.755 11 525652 321989 F 2.851 -0.029 2.88 12 525654 321946 F 2.851 0.205 2.61 13 525659 321918 F 2.805 1.26 1.28 14 525762 322012 F 2.507 1.377 1.13 13 525768 322035 F 2.507 1.377 1.13 14 525781 322085 F 2.453 1.078 1.375 15 525730 322085 F 2.389 0.828 1.57 11 525746 322183 F 2.50 0.237 2.737 11 525707 321857 F 2.660 0.706 1.93 12 52574 321996 F 2.50 1.336 1.4 13 52577 321922 F 2.50 0.32
12 525654 321946 F 2.815 0.205 2.61 13 525659 321918 F 2.803 0.253 2.55 14 525723 322002 F 2.506 1.226 1.28 12 525761 322015 F 2.507 1.377 1.13 13 525761 322076 F 2.453 1.078 1.375 14 525781 322076 F 2.453 1.078 1.375 15 525730 322085 F 2.398 0.828 1.57 14 525769 322153 F 2.50 -0.237 2.737 14 525707 321837 F 2.636 0.706 1.93 152 525742 321959 F 2.636 0.706 1.93 14 525810 322168 F 2.50 0.132 2.398 14 525817 322206 F 2.5 <
N3 525659 321918 F 2.803 0.253 2.55 11 525723 322002 F 2.506 1.226 1.28 12 525762 322015 F 2.507 1.377 1.13 13 525768 322076 F 2.453 1.078 1.375 14 525781 322075 F 2.453 1.078 1.375 15 525730 322085 F 2.398 0.828 1.57 14 525746 322153 F 2.453 0.906 1.82 15 525702 321857 F 2.636 0.706 1.93 14 525742 321995 F 2.636 0.706 1.93 15 525700 321922 F 2.625 1.435 1.19 16 525800 322168 F 2.5 0.354 2.146 14 525817 32206 F 2.5 0
11 525723 322002 F 2.506 1.226 1.28 12 525762 322015 F 2.525 1.395 1.13 13 525768 322035 F 2.507 1.377 1.13 14 525781 322085 F 2.398 0.828 1.57 15 525746 322153 F 2.398 0.828 1.57 11 525746 3221857 F 2.398 0.806 1.82 12 525707 321857 F 2.636 0.706 1.93 12 525702 321959 F 2.636 0.706 1.93 12 525700 321922 F 2.736 1.435 1.19 13 525700 32206 F 2.50 0.102 2.398 14 525801 32207 F 2.5 0.136 1.45 14 525815 322313 F 2.5 0.16
N3 525768 322035 F 2.507 1.377 1.13 144 525781 322076 F 2.453 1.078 1.375 155 525730 322085 F 2.398 0.828 1.57 11 525746 322153 F 2.398 0.828 1.57 11 525707 321857 F 2.52 0.237 2.737 11 525707 321857 F 2.726 0.906 1.82 122 525702 321337 F 2.636 0.706 1.93 12 525704 321959 F 2.659 1.435 1.19 133 525700 321922 F 2.55 0.102 2.398 14 525800 322276 F 2.55 0.102 2.398 14 525817 322070 F 2.5 0.918 1.582 12 52816 322307 F 2.5 <t< td=""></t<>
P4 525781 322076 F 2.453 1.078 1.375 155 525730 322085 F 2.398 0.828 1.57 14 525746 322153 F 2.5 -0.237 2.737 14 525759 322738 F 3.01 1.93 1.08 14 525707 321857 F 2.726 0.906 1.82 12 525702 321837 F 2.636 0.706 1.93 14 525754 321996 F 2.59 1.3 1.29 12 525700 321922 F 2.625 1.435 1.19 13 525700 32192 F 2.5 0.102 2.398 14 525800 322276 F 2.5 0.102 2.398 14 525817 32207 F 2.5 0.918 1.582 15 525816 322307 F 2.5 1.612
11525746322153F2.5-0.2372.73711525759322738F3.011.931.0812525707321857F2.7260.9061.8212525702321837F2.6360.7061.9312525742321996F2.591.31.2913525742321959F2.6251.4351.1914525700321922F2.7361.3361.415525700322206F2.50.1022.39814525801322276F2.50.3542.14612525817322307F2.50.9181.58212525815322307F2.50.9181.58214525828322307F2.51.391.1115525828322307F2.551.391.1114525829322400F2.551.391.1115525876322409F2.551.6120.88814525892322402F2.940.632.3115525814322702F2.940.632.3116525914322742F2.940.632.311752585322702F2.941.620.8513525803322745F2.941.632.3114525914322547<
11 525759 322738 F 3.01 1.93 1.08 11 525707 321857 F 2.726 0.906 1.82 12 525702 321837 F 2.636 0.706 1.93 12 525742 321996 F 2.59 1.3 1.29 12 525742 321959 F 2.625 1.435 1.19 13 525700 321922 F 2.736 1.336 1.4 14 525800 322168 F 2.5 0.102 2.398 14 525817 32206 F 2.5 0.354 2.146 122 525815 322376 F 2.5 0.726 1.774 14 525815 322307 F 2.377 1.48 0.897 153 525846 322307 F 2.377 1.48 0.897 14 525829 322400 F 2.5 1.612
11525707321857F2.7260.9061.8212525702321837F2.6360.7061.9311525754321996F2.591.31.2912525742321959F2.6251.4351.1913525700321922F2.7361.3361.414525800322168F2.50.1022.39814525817322206F2.50.3542.14612525810322276F2.50.9181.58214525815322313F2.50.9181.58215322307F2.3771.480.89714525828322307F2.51.2231.27715525828322307F2.51.6120.88816525829322400F2.51.6120.88817525829322400F2.51.6120.8881852580132240F2.51.6120.88819525851322702F2.780.841.941052585132274F2.940.632.311152585132274F2.940.632.311252585132274F2.940.632.311352580332274F2.940.632.3114525914322516F2.
11525754321996F2.591.31.2912525742321959F2.6251.4351.1913525700321922F2.7361.3361.414525800322168F2.50.1022.39814525817322206F2.50.3542.14612525810322276F2.50.7261.77414525815322313F2.50.9181.58212525846322307F2.3771.480.89713525828322368F2.51.2231.27714525829322400F2.51.391.1114525826322409F2.551.6120.88814525801322427F2.51.6120.8881552581322702F2.940.632.3114525851322734F2.940.632.3115525914322516F2.9322.0820.8516525914322516F2.9941.8241.1714525904322589F2.9251.6651.2614525904322602F2.9251.6651.2614525904322602F2.9251.6651.2614525904322691F2.9251.6651.261452590932
92 525742 321959 F 2.625 1.435 1.19 03 525700 321922 F 2.736 1.336 1.4 01 525800 322168 F 2.5 0.102 2.398 01 525817 32206 F 2.5 0.354 2.146 02 525810 32276 F 2.5 0.726 1.774 01 525815 322313 F 2.377 1.48 0.897 02 525846 322307 F 2.377 1.48 0.897 03 525828 322368 F 2.5 1.223 1.277 04 525829 322400 F 2.432 1.68 0.752 03 525876 322409 F 2.432 1.612 0.888 04 525876 322472 F 2.94 0.84 1.94 02 525876 322702 F 2.94 0.84
11525800322168F2.50.1022.39811525817322206F2.50.3542.14612525810322276F2.50.7261.77412525815322313F2.50.9181.58212525846322307F2.3771.480.89713525828322307F2.51.2231.27714525828322400F2.51.391.1112525876322409F2.4321.680.75213525871322407F2.51.6120.88814525876322409F2.51.6120.88815525876322409F2.51.6120.88816525871322407F2.940.632.3117525825322702F2.940.632.3116525851322745F2.940.632.3117525914322516F2.9322.0820.8510525924322542F2.9441.9441.0213525904322567F2.9251.6651.2614525904322602F2.9251.6651.2614525904322602F2.9251.6651.2614525909322602F2.7751.5151.26145259043
11525817322206F2.50.3542.14612525810322276F2.50.7261.77414525815322313F2.50.9181.58212525846322307F2.3771.480.89713525828322368F2.51.2231.27714525829322400F2.51.391.1112525876322409F2.4321.680.75213525801322477F2.51.6120.88814525892322638F3.081.311.7715525851322702F2.940.632.3114525851322745F2.940.632.3115525814322542F2.941.620.8516525924322542F2.9941.8241.1715525904322567F2.9941.8241.1714525904322567F2.9251.6651.261452590432269F2.9251.6651.2615525904322602F2.9251.6651.2614525909322602F2.7711.5311.2614525904322714F2.7751.5151.26
11525815322313F2.50.9181.58212525846322307F2.3771.480.89713525828322368F2.51.2231.27714525829322400F2.51.391.1112525876322409F2.4321.680.75213525801322427F2.51.6120.8881452580132247F2.51.6120.88815525801322702F2.780.841.9414525851322702F2.940.632.3115525813322745F2.940.632.3116525813322745F2.9940.632.6916525914322516F2.9641.9441.0216525903322567F2.9941.8241.1717525904322589F2.9941.8241.1714525904322589F2.9251.6651.2616525902322602F2.7911.5311.2616525909322691F16525904322714F2.7751.5151.26
92525846322307F2.3771.480.89793525828322368F2.51.2231.27791525829322400F2.51.391.1192525876322409F2.4321.680.75293525801322427F2.51.6120.88891525892322638F3.081.311.7791525851322702F2.780.841.9492525851322734F2.940.632.3193525803322745F2.940.632.3193525803322745F2.940.632.3194525914322516F2.9322.0820.8592525924322542F2.9441.9441.0293525903322567F2.9941.8241.1794525904322589F2.9251.6651.2694525904322602F2.9251.6651.2694525903322602F2.7911.5311.2695525909322601F94525904322714F2.7751.5151.26
93525828322368F2.51.2231.27791525829322400F2.51.391.1192525876322409F2.4321.680.75293525801322427F2.51.6120.88891525892322638F3.081.311.7791525855322702F2.780.841.9492525851322734F2.940.632.3193525803322745F2.940.632.3193525914322516F2.9322.0820.8594525914322516F2.9941.9441.0293525930322567F2.9941.8241.1794525904322589F2.9251.6651.2694525904322602F2.9251.6651.2694525904322602F2.7911.5311.2694525909322691F94525904322714F2.7751.5151.26
92525876322409F2.4321.680.75293525801322427F2.51.6120.88891525892322638F3.081.311.7791525855322702F2.780.841.9492525851322734F2.940.632.3193525803322745F2.990.212.6991525914322516F2.9322.0820.8592525930322567F2.9941.9441.0293525904322589F2.9941.8241.1794525904322692F2.9251.6651.2691525909322602F2.7911.5311.2692525974322714F2.7751.5151.26
93525801322427F2.51.6120.88801525892322638F3.081.311.7701525855322702F2.780.841.9402525851322734F2.940.632.3103525803322745F2.90.212.6904525914322516F2.9322.0820.8502525924322542F2.9641.9441.0203525903322567F2.9941.8241.1704525904322589F2.9251.6651.2601525909322602F2.7911.5311.2602525904322714F2.7751.5151.26
11525892322638F3.081.311.77101525855322702F2.780.841.94102525851322734F2.940.632.31103525803322745F2.90.212.69101525914322516F2.9322.0820.85102525924322542F2.9641.9441.02103525930322567F2.9941.8241.17104525904322589F2.9251.6651.26101525902322602F2.7911.5311.26101525974322714F2.7751.5151.26
92525851322734F2.940.632.3193525803322745F2.90.212.6991525914322516F2.9322.0820.8592525924322542F2.9641.9441.0293525930322567F2.9941.8241.1794525904322589F2.9251.6651.2691525903322602F2.7911.5311.2692525904322691F91525974322714F2.7751.5151.26
93525803322745F2.90.212.6991525914322516F2.9322.0820.8592525924322542F2.9641.9441.0293525930322567F2.9941.8241.1794525904322589F2.9251.6651.2691525902322602F2.7911.5311.2692525909322691F91525974322714F2.7751.5151.26
91525914322516F2.9322.0820.8592525924322542F2.9641.9441.0293525930322567F2.9941.8241.1794525904322589F2.9251.6651.2691525902322602F2.7911.5311.2692525909322691F91525974322714F2.7751.5151.26
93525930322567F2.9941.8241.1794525904322589F2.9251.6651.2691525902322602F2.7911.5311.2692525909322691F91525974322714F2.7751.5151.26
94525904322589F2.9251.6651.2691525902322602F2.7911.5311.2692525909322691F91525974322714F2.7751.5151.26
525909322691F525974322714F2.7751.5151.26
01 525974 322714 F 2.775 1.515 1.26
NN <td< td=""></td<>
NoteN
III <t< td=""></t<>
Note
NNN <t< td=""></t<>
III <t< td=""></t<>
NormalNor
III <t< td=""></t<>
III <t< td=""></t<>
NNN
Image <t< td=""></t<>
Note
Note
ImageIm
Image: stateImage: s
Image: stateImage: s
Image: state s
Image: stateImage: state </td
Image: state of the state of
Image: Section of the section of t
NNN
NNN
Image: state of the state of
Image: state of the state of
Image: state in the state i
Image: state interpress inte
Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface Image: state interface <t< td=""></t<>
Image: sector of the sector
Image: state of the state of
Image: state in the state i
Image: state interpretain state int
Image: state interpretaint of the state interpretaint of th
Image: state intermediate in
Image: state of the state of
Image: state in the state in
Image: state interpretain state int
Image: state of the state of
Image: series of the series
Image: set of the
Image: state of the state of
Image: state interpretation of the state i
Image: state of the state of
Image: series of the series
Image: state in the state in
Image: series of the series
Image: set of the
Image: second
Image: selection of the
Image: Constraint of the sector of the sec
Image: state of the state of
Image: selection of the
Image:
Image: second
Image: state of the state
Image: state of the state
Image: selection of the

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	In
		·			

Cover Leve	el Invert Level	Depth to Invert	1	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
			_							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			_							
			-							
			-							
			1							
			1							
			1							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			-							
			_							
			-							
			-							
			_							
			_							
			_							
			-							
			-							
			1							
			1							
			1							
			-							
			-							
			-							
			_							
			-							
			-							
			-							
			-							
			1							
			1							
			-							

Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
	•												Ref: 628100 - 1

Our Ref: 628100 - 1